An Overall Real-Time Mechanism for Classification and Quality Evaluation of Rice
- URL: http://arxiv.org/abs/2502.13764v1
- Date: Wed, 19 Feb 2025 14:24:25 GMT
- Title: An Overall Real-Time Mechanism for Classification and Quality Evaluation of Rice
- Authors: Wanke Xia, Ruxin Peng, Haoqi Chu, Xinlei Zhu, Zhiyu Yang, Yaojun Wang,
- Abstract summary: This study proposes a real-time evaluation mechanism for comprehensive rice grain assessment.
It integrates a one-stage object detection approach, a deep convolutional neural network, and traditional machine learning techniques.
The proposed framework enables rice variety identification, grain completeness grading, and grain chalkiness evaluation.
- Score: 1.7034902216513157
- License:
- Abstract: Rice is one of the most widely cultivated crops globally and has been developed into numerous varieties. The quality of rice during cultivation is primarily determined by its cultivar and characteristics. Traditionally, rice classification and quality assessment rely on manual visual inspection, a process that is both time-consuming and prone to errors. However, with advancements in machine vision technology, automating rice classification and quality evaluation based on its cultivar and characteristics has become increasingly feasible, enhancing both accuracy and efficiency. This study proposes a real-time evaluation mechanism for comprehensive rice grain assessment, integrating a one-stage object detection approach, a deep convolutional neural network, and traditional machine learning techniques. The proposed framework enables rice variety identification, grain completeness grading, and grain chalkiness evaluation. The rice grain dataset used in this study comprises approximately 20,000 images from six widely cultivated rice varieties in China. Experimental results demonstrate that the proposed mechanism achieves a mean average precision (mAP) of 99.14% in the object detection task and an accuracy of 97.89% in the classification task. Furthermore, the framework attains an average accuracy of 97.56% in grain completeness grading within the same rice variety, contributing to an effective quality evaluation system.
Related papers
- Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection [51.65457287518379]
This study is the first empirical investigation of weed recognition for laser weeding.
We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system.
The proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.
arXiv Detail & Related papers (2025-02-10T08:42:46Z) - AI-Generated Image Quality Assessment Based on Task-Specific Prompt and Multi-Granularity Similarity [62.00987205438436]
We propose a novel quality assessment method for AIGIs named TSP-MGS.
It designs task-specific prompts and measures multi-granularity similarity between AIGIs and the prompts.
Experiments on the commonly used AGIQA-1K and AGIQA-3K benchmarks demonstrate the superiority of the proposed TSP-MGS.
arXiv Detail & Related papers (2024-11-25T04:47:53Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - A novel method for identifying rice seed purity based on hybrid machine learning algorithms [0.0]
In the grain industry, the identification of seed purity is a crucial task as it is an important factor in evaluating the quality of seeds.
This study proposes a novel method for automatically identifying the rice seed purity of a certain rice variety based on hybrid machine learning algorithms.
arXiv Detail & Related papers (2024-06-09T17:13:25Z) - Feasibility of machine learning-based rice yield prediction in India at
the district level using climate reanalysis data [0.0]
This study aims to investigate whether machine learning-based yield prediction models can capably predict Kharif season rice yields at the district level in India.
The methodology involved training 19 machine learning models on 20 years of climate, satellite, and rice yield data across 247 of Indian rice-producing districts.
Results showed rice yields can be predicted with a reasonable degree of accuracy, with out-of-sample R2, MAE, and MAPE performance of up to 0.82, 0.29, and 0.16 respectively.
arXiv Detail & Related papers (2024-03-12T13:31:13Z) - A Saliency-based Clustering Framework for Identifying Aberrant
Predictions [49.1574468325115]
We introduce the concept of aberrant predictions, emphasizing that the nature of classification errors is as critical as their frequency.
We propose a novel, efficient training methodology aimed at both reducing the misclassification rate and discerning aberrant predictions.
We apply this methodology to the less-explored domain of veterinary radiology, where the stakes are high but have not been as extensively studied compared to human medicine.
arXiv Detail & Related papers (2023-11-11T01:53:59Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded.
Machine learning and deep learning techniques dominate the top-performing methods.
Deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features.
arXiv Detail & Related papers (2022-12-29T19:32:20Z) - Vision-Based Defect Classification and Weight Estimation of Rice Kernels [12.747541089354538]
We present an automatic visual quality estimation system of rice kernels, to classify the sampled rice kernels according to their types of flaws, and evaluate their quality via the weight ratios of the perspective kernel types.
We define a novel metric to measure the relative weight of each kernel in the image from its area, such that the relative weight of each type of kernels with regard to the all samples can be computed and used as the basis for rice quality estimation.
arXiv Detail & Related papers (2022-10-06T03:58:05Z) - Automatic Detection of Rice Disease in Images of Various Leaf Sizes [0.5284812806199193]
We focused on the solution using computer vision technique to detect rice diseases from rice field photograph images.
To solve this problem, we presented a technique combining a CNN object detection with image tiling technique.
Our technique was evaluated on 4,960 images of eight different types of rice leaf diseases, including blast, blight, brown spot, narrow brown spot, orange, red stripe, rice grassy stunt virus, and streak disease.
arXiv Detail & Related papers (2022-06-15T07:56:41Z) - A System for Automatic Rice Disease Detection from Rice Paddy Images
Serviced via a Chatbot [0.0]
A LINE Bot System to diagnose rice diseases from actual paddy field images was developed and presented in this paper.
The targeted images were taken from the actual paddy environment without special sample preparation.
We used a deep learning neural networks technique to detect rice diseases from the images.
arXiv Detail & Related papers (2020-11-21T16:45:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.