Artificial Immune System of Secure Face Recognition Against Adversarial Attacks
- URL: http://arxiv.org/abs/2406.18144v1
- Date: Wed, 26 Jun 2024 07:50:58 GMT
- Title: Artificial Immune System of Secure Face Recognition Against Adversarial Attacks
- Authors: Min Ren, Yunlong Wang, Yuhao Zhu, Yongzhen Huang, Zhenan Sun, Qi Li, Tieniu Tan,
- Abstract summary: optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
- Score: 67.31542713498627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Insect production for food and feed presents a promising supplement to ensure food safety and address the adverse impacts of agriculture on climate and environment in the future. However, optimisation is required for insect production to realise its full potential. This can be by targeted improvement of traits of interest through selective breeding, an approach which has so far been underexplored and underutilised in insect farming. Here we present a comprehensive review of the selective breeding framework in the context of insect production. We systematically evaluate adjustments of selective breeding techniques to the realm of insects and highlight the essential components integral to the breeding process. The discussion covers every step of a conventional breeding scheme, such as formulation of breeding objectives, phenotyping, estimation of genetic parameters and breeding values, selection of appropriate breeding strategies, and mitigation of issues associated with genetic diversity depletion and inbreeding. This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology, offering an integrated view of the insect breeding research area and uniting knowledge which has previously remained scattered across diverse fields of expertise.
Related papers
- InsectMamba: Insect Pest Classification with State Space Model [8.470757741028661]
InsectMamba is a novel approach that integrates State Space Models (SSMs), Convolutional Neural Networks (CNNs), Multi-Head Self-Attention mechanism (MSA) and Multilayer Perceptrons (MLPs) within Mix-SSM blocks.
It was evaluated against strong competitors across five insect pest classification datasets.
arXiv Detail & Related papers (2024-04-04T17:34:21Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - AMaizeD: An End to End Pipeline for Automatic Maize Disease Detection [0.0]
AMaizeD is an automated framework for early detection of diseases in maize crops using multispectral imagery obtained from drones.
The proposed framework employs a combination of convolutional neural networks (CNNs) as feature extractors and segmentation techniques to identify both the maize plants and their associated diseases.
arXiv Detail & Related papers (2023-07-23T19:58:40Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds.
It can also abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool.
arXiv Detail & Related papers (2023-06-04T23:56:53Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision
for Precision Pollination [6.2997667081978825]
Insects are the most important global pollinator of crops and play a key role in maintaining the sustainability of natural ecosystems.
Current computer vision facilitated insect tracking in complex outdoor environments is restricted in spatial coverage.
This article introduces a novel system to facilitate markerless data capture for insect counting, insect motion tracking, behaviour analysis and pollination prediction.
arXiv Detail & Related papers (2022-05-10T05:11:28Z) - Weakly Supervised Learning Guided by Activation Mapping Applied to a
Novel Citrus Pest Benchmark [6.239768930024569]
Integrated Pest Management is the most widely used process to prevent and mitigate the damages caused by pests and diseases in citrus crops.
We design a weakly supervised learning process guided by saliency maps to automatically select regions of interest in the images.
Experiments conducted on two large datasets demonstrate that our results are very promising for the problem of pest and disease classification in the agriculture field.
arXiv Detail & Related papers (2020-04-22T01:26:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.