Helix-mRNA: A Hybrid Foundation Model For Full Sequence mRNA Therapeutics
- URL: http://arxiv.org/abs/2502.13785v1
- Date: Wed, 19 Feb 2025 14:51:41 GMT
- Title: Helix-mRNA: A Hybrid Foundation Model For Full Sequence mRNA Therapeutics
- Authors: Matthew Wood, Mathieu Klop, Maxime Allard,
- Abstract summary: mRNA-based vaccines have become a major focus in the pharmaceutical industry.
optimizing mRNA sequences for those properties remains a complex challenge.
We present Helix-mRNA, a structured state-space-based and attention hybrid model to address these challenges.
- Score: 3.2508287756500165
- License:
- Abstract: mRNA-based vaccines have become a major focus in the pharmaceutical industry. The coding sequence as well as the Untranslated Regions (UTRs) of an mRNA can strongly influence translation efficiency, stability, degradation, and other factors that collectively determine a vaccine's effectiveness. However, optimizing mRNA sequences for those properties remains a complex challenge. Existing deep learning models often focus solely on coding region optimization, overlooking the UTRs. We present Helix-mRNA, a structured state-space-based and attention hybrid model to address these challenges. In addition to a first pre-training, a second pre-training stage allows us to specialise the model with high-quality data. We employ single nucleotide tokenization of mRNA sequences with codon separation, ensuring prior biological and structural information from the original mRNA sequence is not lost. Our model, Helix-mRNA, outperforms existing methods in analysing both UTRs and coding region properties. It can process sequences 6x longer than current approaches while using only 10% of the parameters of existing foundation models. Its predictive capabilities extend to all mRNA regions. We open-source the model (https://github.com/helicalAI/helical) and model weights (https://huggingface.co/helical-ai/helix-mRNA).
Related papers
- Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Code is a comprehensive framework that spans different biological functions.
Life-Code achieves state-of-the-art performance on various tasks across three omics.
arXiv Detail & Related papers (2025-02-11T06:53:59Z) - LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs [11.346750562942345]
Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes.
Deep learning-based approaches have been introduced to classify lncRNAs.
LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification.
arXiv Detail & Related papers (2024-11-11T22:17:01Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLM uses large datasets of RNA sequences to learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector.
Among them, predicting the secondary structure is a fundamental task for uncovering RNA functional mechanisms.
We present a comprehensive experimental analysis of several pre-trained RNA-LLM, comparing them for the RNA secondary structure prediction task in a unified deep learning framework.
arXiv Detail & Related papers (2024-10-21T17:12:06Z) - Latent Diffusion Models for Controllable RNA Sequence Generation [33.38594748558547]
RNA is a key intermediary between DNA and protein, exhibiting high sequence diversity and complex three-dimensional structures.
We develop a latent diffusion model for generating and optimizing discrete RNA sequences of variable lengths.
Empirical results confirm that RNAdiffusion generates non-coding RNAs that align with natural distributions across various biological metrics.
arXiv Detail & Related papers (2024-09-15T19:04:50Z) - mRNA2vec: mRNA Embedding with Language Model in the 5'UTR-CDS for mRNA Design [0.4999814847776097]
This paper proposes a novel contextual language model (LM)-based embedding method: mRNA2vec.
In contrast to existing mRNA embedding approaches, our method is based on the self-supervised teacher-student learning framework of data2vec.
mRNA2vec demonstrates significant improvements in translation efficiency (TE) and expression level (EL) prediction tasks.
arXiv Detail & Related papers (2024-08-16T23:23:40Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks [1.1764999317813143]
We introduce RiboNucleic Acid Language Model (RiNALMo) to unveil the hidden code of RNA.
RiNALMo is the largest RNA language model to date, with 650M parameters pre-trained on 36M non-coding RNA sequences.
arXiv Detail & Related papers (2024-02-29T14:50:58Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.
RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.