論文の概要: AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations
- arxiv url: http://arxiv.org/abs/2502.13843v2
- Date: Fri, 18 Apr 2025 07:48:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-21 15:46:21.352639
- Title: AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations
- Title(参考訳): AgentCF++: メモリ強化LDMベースのエージェント
- Authors: Jiahao Liu, Shengkang Gu, Dongsheng Li, Guangping Zhang, Mingzhe Han, Hansu Gu, Peng Zhang, Tun Lu, Li Shang, Ning Gu,
- Abstract要約: LLMベースのユーザエージェントは、レコメンダシステムを強化するための有望なアプローチとして現れつつある。
本稿では,2段階融合機構と組み合わせた2層メモリアーキテクチャを提案する。
また、関心グループの概念やグループ共有メモリを導入し、類似の関心を持つユーザに対する人気要因の影響をよりよく把握する。
- 参考スコア(独自算出の注目度): 28.559223475725137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-based user agents, which simulate user interaction behavior, are emerging as a promising approach to enhancing recommender systems. In real-world scenarios, users' interactions often exhibit cross-domain characteristics and are influenced by others. However, the memory design in current methods causes user agents to introduce significant irrelevant information during decision-making in cross-domain scenarios and makes them unable to recognize the influence of other users' interactions, such as popularity factors. To tackle this issue, we propose a dual-layer memory architecture combined with a two-step fusion mechanism. This design avoids irrelevant information during decision-making while ensuring effective integration of cross-domain preferences. We also introduce the concepts of interest groups and group-shared memory to better capture the influence of popularity factors on users with similar interests. Comprehensive experiments validate the effectiveness of AgentCF++. Our code is available at https://github.com/jhliu0807/AgentCF-plus.
- Abstract(参考訳): ユーザインタラクションの振る舞いをシミュレートするLLMベースのユーザエージェントが,レコメンダシステムを強化するための有望なアプローチとして登場している。
現実のシナリオでは、ユーザのインタラクションはドメイン間の特性を示し、他人の影響を受けます。
しかし、現在の手法におけるメモリ設計は、クロスドメインシナリオにおける意思決定において重要な無関係な情報を導入し、人気要因など他のユーザのインタラクションの影響を認識できないようにしている。
この問題に対処するために,2段階融合機構と組み合わせた2層メモリアーキテクチャを提案する。
この設計は、クロスドメイン優先の効果的な統合を確保しつつ、意思決定中に無関係な情報を避ける。
また、関心グループの概念やグループ共有メモリを導入し、類似の関心を持つユーザに対する人気要因の影響をよりよく把握する。
AgentCF++の有効性を総合的に検証する。
私たちのコードはhttps://github.com/jhliu0807/AgentCF-plusで利用可能です。
関連論文リスト
- DisCo: Graph-Based Disentangled Contrastive Learning for Cold-Start Cross-Domain Recommendation [11.61586672399166]
クロスドメインレコメンデーション(CDR)が有望なソリューションとして登場した。
しかし、ソースドメインに類似した好みを持つユーザは、ターゲットドメインに対して異なる関心を示す可能性がある。
そこで本稿では,ユーザ意図の微粒化を捉えるために,グラフに基づく非交叉型コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:20:42Z) - Cross-domain Transfer of Valence Preferences via a Meta-optimization Approach [17.545983294377958]
CVPMはメタラーニングと自己教師型学習のハイブリッドアーキテクチャとして、ドメイン間の関心伝達を形式化する。
ユーザの好みに対する深い洞察を得て、差別化されたエンコーダを使って分布を学習する。
特に、各ユーザのマッピングを共通の変換とパーソナライズされたバイアスの2つの部分として扱い、そこでは、パーソナライズされたバイアスを生成するネットワークがメタラーナーによって出力される。
論文 参考訳(メタデータ) (2024-06-24T10:02:24Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - Information Maximization via Variational Autoencoders for Cross-Domain Recommendation [26.099908029810756]
我々は、情報最大化変分オートエンコーダ(textbftextttIM-VAE)という新しいCDSRフレームワークを導入する。
ここでは、下流の細粒度CDSRモデルに対するユーザのインタラクション履歴入力を強化するために擬似シーケンス生成器を提案する。
我々の知る限りでは、オープンワールドレコメンデーションシナリオにおける擬似シーケンスの情報のゆがみとデノベーションを考慮に入れた最初のCDSR作品である。
論文 参考訳(メタデータ) (2024-05-31T09:07:03Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
ドメイン固有・クロスドメイン情報を抽出するために,ローカル・グローバル・アテンション・モジュールを用いた混在注意ネットワーク(MAN)を提案する。
2つの実世界のデータセットに対する実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2023-11-14T16:07:16Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Cross-domain recommendation via user interest alignment [20.387327479445773]
クロスドメインレコメンデーションは、複数のドメインからの知識を活用して、従来のレコメンデーションシステムにおけるデータの分散性とコールドスタートの問題を軽減することを目的としている。
このアプローチの一般的な実践は、各ドメインに個別にユーザ埋め込みをトレーニングし、それらを平易な方法で集約することです。
本稿では,2つのドメインの推薦性能を改善するために,新しいドメイン間推薦フレームワークであるCOASTを提案する。
論文 参考訳(メタデータ) (2023-01-26T23:54:41Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - Modular Interactive Video Object Segmentation: Interaction-to-Mask,
Propagation and Difference-Aware Fusion [68.45737688496654]
本稿では,マスク間相互作用とマスク伝搬を分離するモジュール型対話型VOSフレームワークを提案する。
提案手法は,フレーム間インタラクションを少なくしつつ,現在の最先端アルゴリズムよりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-14T14:39:08Z) - CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect
Transfer Network [49.35977893592626]
コールドスタートユーザのためのアスペクト転送ネットワークによるクロスドメインレコメンデーションフレームワーク(CATN)を提案する。
CATNは、レビュー文書から各ユーザと各アイテムの複数のアスペクトを抽出し、注意機構を用いてドメイン間のアスペクト相関を学習する。
実世界のデータセットでは、提案したCATNは、評価予測精度の点でSOTAモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-05-21T10:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。