Evaluation of EAS directions based on TAIGA HiSCORE data using fully connected neural networks
- URL: http://arxiv.org/abs/2502.13851v1
- Date: Wed, 19 Feb 2025 16:12:37 GMT
- Title: Evaluation of EAS directions based on TAIGA HiSCORE data using fully connected neural networks
- Authors: A. P. Kryukov, S. P. Polyakov, Yu. Yu. Dubenskaya, E. O. Gres, E. B. Postnikov, P. A. Volchugov, D. P. Zhurov,
- Abstract summary: We use artificial neural networks trained on Monte Carlo-simulated TAIGA HiSCORE data for gamma quanta to obtain shower direction estimates.
The mean error of the final estimates is less than 0.25 degrees.
- Score: 0.0
- License:
- Abstract: The direction of extensive air showers can be used to determine the source of gamma quanta and plays an important role in estimating the energy of the primary particle. The data from an array of non-imaging Cherenkov detector stations HiSCORE in the TAIGA experiment registering the number of photoelectrons and detection time can be used to estimate the shower direction with high accuracy. In this work, we use artificial neural networks trained on Monte Carlo-simulated TAIGA HiSCORE data for gamma quanta to obtain shower direction estimates. The neural networks are multilayer perceptrons with skip connections using partial data from several HiSCORE stations as inputs; composite estimates are derived from multiple individual estimates by the neural networks. We apply a two-stage algorithm in which the direction estimates obtained in the first stage are used to transform the input data and refine the estimates. The mean error of the final estimates is less than 0.25 degrees. The approach will be used for multimodal analysis of the data from several types of detectors used in the TAIGA experiment.
Related papers
- Trade-Offs of Diagonal Fisher Information Matrix Estimators [53.35448232352667]
The Fisher information matrix can be used to characterize the local geometry of the parameter space of neural networks.
We examine two popular estimators whose accuracy and sample complexity depend on their associated variances.
We derive bounds of the variances and instantiate them in neural networks for regression and classification.
arXiv Detail & Related papers (2024-02-08T03:29:10Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Using deep neural networks to improve the precision of fast-sampled
particle timing detectors [0.0]
Measurements from particle timing detectors are often affected by the time walk effect caused by statistical fluctuations in the charge deposited by passing particles.
The constant fraction discriminator (CFD) algorithm is frequently used to mitigate this effect both in test setups and in running experiments.
We evaluated various neural network architectures using data acquired at the test beam facility in the DESY-II synchrotron.
We improved the timing precision by 8% to 23%, depending on the detector's readout channel.
arXiv Detail & Related papers (2023-12-10T13:22:46Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Machine learning and atomic layer deposition: predicting saturation
times from reactor growth profiles using artificial neural networks [0.0]
We introduce a dataset designed to train neural networks to predict saturation times based on the dose time and thickness values measured at different points of the reactor.
The results show that trained neural networks can accurately predict saturation times without requiring any prior information on the surface kinetics.
arXiv Detail & Related papers (2022-05-10T23:18:22Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Analysis of the HiSCORE Simulated Events in TAIGA Experiment Using
Convolutional Neural Networks [77.34726150561087]
We propose to consider the use of convolution neural networks in task of air shower characteristics determination.
We use CNN to analyze HiSCORE events, treating them like images.
In addition, we present some preliminary results on the determination of the parameters of air showers.
arXiv Detail & Related papers (2021-12-19T15:18:56Z) - Assessments of model-form uncertainty using Gaussian stochastic weight
averaging for fluid-flow regression [0.0]
We use Gaussian weight averaging (SWAG) to assess the model-form uncertainty associated with neural-network-based function approximation relevant to fluid flows.
SWAG approximates a posterior Gaussian distribution of each weight, given training data, and a constant learning rate.
We demonstrate the applicability of the method for two types of neural networks.
arXiv Detail & Related papers (2021-09-16T23:13:26Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity.
We apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs)
arXiv Detail & Related papers (2020-12-19T02:03:53Z) - Data-aided Sensing for Gaussian Process Regression in IoT Systems [48.523643863141466]
We use data-aided sensing to learn data sets collected from sensors in Internet-of-Things systems.
We show that modified multichannel ALOHA with predictions can help improve the performance of Gaussian process regression with data-aided sensing.
arXiv Detail & Related papers (2020-11-23T20:59:51Z) - Complete parameter inference for GW150914 using deep learning [0.0]
LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past five years.
As the rate of detections grows with detector sensitivity, this poses a growing computational challenge for data analysis.
We apply deep learning techniques to perform fast likelihood-free Bayesian inference for gravitational waves.
arXiv Detail & Related papers (2020-08-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.