Continually Learning Structured Visual Representations via Network Refinement with Rerelation
- URL: http://arxiv.org/abs/2502.13935v1
- Date: Wed, 19 Feb 2025 18:18:27 GMT
- Title: Continually Learning Structured Visual Representations via Network Refinement with Rerelation
- Authors: Zeki Doruk Erden, Boi Faltings,
- Abstract summary: Current machine learning paradigm relies on continuous representations like neural networks, which iteratively adjust parameters to approximate outcomes.
We propose a method that learns visual space in a structured, continual manner.
- Score: 15.376349115976534
- License:
- Abstract: Current machine learning paradigm relies on continuous representations like neural networks, which iteratively adjust parameters to approximate outcomes rather than directly learning the structure of problem. This spreads information across the network, causing issues like information loss and incomprehensibility Building on prior work in environment dynamics modeling, we propose a method that learns visual space in a structured, continual manner. Our approach refines networks to capture the core structure of objects while representing significant subvariants in structure efficiently. We demonstrate this with 2D shape detection, showing incremental learning on MNIST without overwriting knowledge and creating compact, comprehensible representations. These results offer a promising step toward a transparent, continually learning alternative to traditional neural networks for visual processing.
Related papers
- The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns [3.9848584845601014]
We present the cooperative network architecture (CNA), a model that learns such net structure to represent input patterns and deals robustly with noise, deformation, and out-of-distribution data.
arXiv Detail & Related papers (2024-07-08T06:22:10Z) - Improving In-Context Learning in Diffusion Models with Visual
Context-Modulated Prompts [83.03471704115786]
We introduce improved Prompt Diffusion (iPromptDiff) in this study.
iPromptDiff integrates an end-to-end trained vision encoder that converts visual context into an embedding vector.
We show that a diffusion-based vision foundation model, when equipped with this visual context-modulated text guidance and a standard ControlNet structure, exhibits versatility and robustness across a variety of training tasks.
arXiv Detail & Related papers (2023-12-03T14:15:52Z) - Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations [0.5249805590164901]
We build a Graph Neural Network that learns a robust representation of the glass' static structure.
We show that this constraint significantly improves the predictive power at comparable or reduced number of parameters.
While remaining a Deep network, our model has improved interpretability compared to other GNNs.
arXiv Detail & Related papers (2022-11-06T22:05:27Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
We develop a novel visual explanation method called Shap-CAM based on class activation mapping.
We demonstrate that Shap-CAM achieves better visual performance and fairness for interpreting the decision making process.
arXiv Detail & Related papers (2022-08-07T00:59:23Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Network representation learning systematic review: ancestors and current
development state [1.0312968200748116]
We present a systematic survey of network representation learning, known as network embedding, from birth to the current development state.
We provide also formal definitions of basic concepts required to understand network representation learning.
Most commonly used downstream tasks to evaluate embeddings, their evaluation metrics and popular datasets are highlighted.
arXiv Detail & Related papers (2021-09-14T14:44:44Z) - WeightScale: Interpreting Weight Change in Neural Networks [0.0]
We present an approach to interpret learning in neural networks by measuring relative weight change on a per layer basis.
We use this approach to investigate learning in the context of vision tasks across a variety of state-of-the-art networks.
arXiv Detail & Related papers (2021-07-07T21:18:38Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.