論文の概要: A Baseline Method for Removing Invisible Image Watermarks using Deep Image Prior
- arxiv url: http://arxiv.org/abs/2502.13998v1
- Date: Wed, 19 Feb 2025 07:30:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 17:44:03.863762
- Title: A Baseline Method for Removing Invisible Image Watermarks using Deep Image Prior
- Title(参考訳): 深部画像を用いた見えない画像の透かし除去のためのベースライン法
- Authors: Hengyue Liang, Taihui Li, Ju Sun,
- Abstract要約: 透かし画像のデータセットや透かしシステムに関する知識を必要とせずに、見えない画像の透かしを除去するブラックボックス方式を提案する。
DIPの中間段階から、見えない透かしを除去できる回避像を確実に見つけることができることを示す。
- 参考スコア(独自算出の注目度): 2.5096001124754728
- License:
- Abstract: Image watermarks have been considered a promising technique to help detect AI-generated content, which can be used to protect copyright or prevent fake image abuse. In this work, we present a black-box method for removing invisible image watermarks, without the need of any dataset of watermarked images or any knowledge about the watermark system. Our approach is simple to implement: given a single watermarked image, we regress it by deep image prior (DIP). We show that from the intermediate steps of DIP one can reliably find an evasion image that can remove invisible watermarks while preserving high image quality. Due to its unique working mechanism and practical effectiveness, we advocate including DIP as a baseline invasion method for benchmarking the robustness of watermarking systems. Finally, by showing the limited ability of DIP and other existing black-box methods in evading training-based visible watermarks, we discuss the positive implications on the practical use of training-based visible watermarks to prevent misinformation abuse.
- Abstract(参考訳): 画像透かしは、著作権保護や偽画像の乱用防止に使用できるAI生成コンテンツを検出するための有望な技術だと考えられている。
本研究では,透かし画像のデータセットや透かしシステムに関する知識を必要とせずに,見えない画像の透かしを除去するブラックボックス方式を提案する。
ウォーターマークされた画像が1つあれば、ディープ・イメージ・プレロード(DIP)で再描画します。
DIPの中間段階から、高い画質を維持しつつ、目に見えない透かしを除去できる回避画像を確実に見つけることができることを示す。
独自の作業機構と実用性から,透かしシステムのロバスト性をベンチマークするためのベースライン侵入手法としてDIPを提唱する。
最後に、トレーニングベースの可視透かしを回避するために、DIPや他の既存のブラックボックス方式の限られた能力を示すことにより、誤情報の乱用を防止するために、トレーニングベースの可視透かしを実用的に活用することに対する肯定的な意味を論じる。
関連論文リスト
- Invisible Watermarks: Attacks and Robustness [0.3495246564946556]
本稿では,攻撃時の画像品質の劣化を最小限に抑えるとともに,透かしの堅牢性を向上する新しい手法を提案する。
そこで本研究では,デコード中,一方の透かしのモダリティを保ちながら他方を完全に除去する独自の透かし除去ネットワークを提案する。
評価の結果,1)他のモダリティを復号する際の透かしモダリティの1つを保持するための透かし除去モデルの実装は,ベースライン性能において若干改善され,2)LBAは画像全体の均一なぼかしに比べて画像の劣化を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-12-17T03:50:13Z) - ESpeW: Robust Copyright Protection for LLM-based EaaS via Embedding-Specific Watermark [50.08021440235581]
組み込み・アズ・ア・サービス(Eding)はAIアプリケーションにおいて重要な役割を担っている。
編集はモデル抽出攻撃に対して脆弱であり、著作権保護の緊急の必要性を強調している。
そこで我々は,Edingの著作権保護を堅牢にするための新しい埋め込み専用透かし (ESpeW) 機構を提案する。
論文 参考訳(メタデータ) (2024-10-23T04:34:49Z) - Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
本稿では,メディア認証のために,見えない秘密メッセージを実画像に埋め込む半フレジブルな画像透かし手法を提案する。
提案するフレームワークは,顔の操作や改ざんに対して脆弱であると同時に,画像処理操作や透かし除去攻撃に対して頑健であるように設計されている。
論文 参考訳(メタデータ) (2024-10-02T18:05:03Z) - Steganalysis on Digital Watermarking: Is Your Defense Truly Impervious? [21.06493827123594]
ステガナリシス攻撃は 最小限の知覚歪みで 透かしを抽出し除去できる
平均的な透かし画像の集合は、その下にある透かしパターンを明らかにすることができる。
本稿では,コンテンツ適応型透かし戦略とステガナリシスに対するセキュリティ評価を実施するためのセキュリティガイドラインを提案する。
論文 参考訳(メタデータ) (2024-06-13T12:01:28Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
我々は、透かしやディープフェイク検出器を含む様々なAI画像検出器の堅牢性を分析する。
ウォーターマーキング手法は,攻撃者が実際の画像をウォーターマーキングとして識別することを目的としたスプーフ攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2023-09-29T18:30:29Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisibleの透かしは、所有者によってのみ検出可能な隠されたメッセージを埋め込むことで、画像の著作権を保護する。
我々は、これらの見えない透かしを取り除くために、再生攻撃のファミリーを提案する。
提案手法は,まず画像にランダムノイズを加えて透かしを破壊し,画像を再構成する。
論文 参考訳(メタデータ) (2023-06-02T23:29:28Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Watermark Faker: Towards Forgery of Digital Image Watermarking [10.14145437847397]
我々は, 生成的逆学習を用いて, デジタル画像ウォーターマーク・フェイカーの開発を初めて試みる。
提案手法は,空間領域と周波数領域の両方において,デジタル画像透かしを効果的にクラックできることを示す。
論文 参考訳(メタデータ) (2021-03-23T12:28:00Z) - WDNet: Watermark-Decomposition Network for Visible Watermark Removal [61.14614115654322]
透かしのサイズ、形状、色、透明さの不確かさは、画像から画像への翻訳技術にとって大きな障壁となった。
従来の透かし画像分解を2段発電機(WDNet(Watermark-Decomposition Network))に組み合わせます。
分解製剤は、WDNetが単に削除するのではなく、画像から透かしを分離することができます。
論文 参考訳(メタデータ) (2020-12-14T15:07:35Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。