Inter3D: A Benchmark and Strong Baseline for Human-Interactive 3D Object Reconstruction
- URL: http://arxiv.org/abs/2502.14004v1
- Date: Wed, 19 Feb 2025 10:00:00 GMT
- Title: Inter3D: A Benchmark and Strong Baseline for Human-Interactive 3D Object Reconstruction
- Authors: Gan Chen, Ying He, Mulin Yu, F. Richard Yu, Gang Xu, Fei Ma, Ming Li, Guang Zhou,
- Abstract summary: We propose Inter3D, a new benchmark and approach for novel state synthesis of human-interactive objects.
We conduct extensive experiments on the proposed benchmark, showcasing the challenges of the task and the superiority of our approach.
- Score: 34.89563280020313
- License:
- Abstract: Recent advancements in implicit 3D reconstruction methods, e.g., neural rendering fields and Gaussian splatting, have primarily focused on novel view synthesis of static or dynamic objects with continuous motion states. However, these approaches struggle to efficiently model a human-interactive object with n movable parts, requiring 2^n separate models to represent all discrete states. To overcome this limitation, we propose Inter3D, a new benchmark and approach for novel state synthesis of human-interactive objects. We introduce a self-collected dataset featuring commonly encountered interactive objects and a new evaluation pipeline, where only individual part states are observed during training, while part combination states remain unseen. We also propose a strong baseline approach that leverages Space Discrepancy Tensors to efficiently modelling all states of an object. To alleviate the impractical constraints on camera trajectories across training states, we propose a Mutual State Regularization mechanism to enhance the spatial density consistency of movable parts. In addition, we explore two occupancy grid sampling strategies to facilitate training efficiency. We conduct extensive experiments on the proposed benchmark, showcasing the challenges of the task and the superiority of our approach.
Related papers
- Betsu-Betsu: Multi-View Separable 3D Reconstruction of Two Interacting Objects [67.96148051569993]
This paper introduces a new neuro-implicit method that can reconstruct the geometry and appearance of two objects undergoing close interactions while disjoining both in 3D.
The framework is end-to-end trainable and supervised using a novel alpha-blending regularisation.
We introduce a new dataset consisting of close interactions between a human and an object and also evaluate on two scenes of humans performing martial arts.
arXiv Detail & Related papers (2025-02-19T18:59:56Z) - MOVIS: Enhancing Multi-Object Novel View Synthesis for Indoor Scenes [35.16430027877207]
MOVIS aims to enhance the structural awareness of the view-conditioned diffusion model for multi-object NVS.
We introduce an auxiliary task requiring the model to simultaneously predict novel view object masks.
To evaluate the plausibility of synthesized images, we propose to assess cross-view consistency and novel view object placement.
arXiv Detail & Related papers (2024-12-16T05:23:45Z) - LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation [32.27869897947267]
We introduce LEIA, a novel approach for representing dynamic 3D objects.
Our method involves observing the object at distinct time steps or "states" and conditioning a hypernetwork on the current state.
By interpolating between these states, we can generate novel articulation configurations in 3D space that were previously unseen.
arXiv Detail & Related papers (2024-09-10T17:59:53Z) - SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images
for Articulated Objects [24.737865259695006]
We propose a self-supervised interaction perception method, referred to as SM$3$, to model articulated objects.
By constructing 3D geometries and textures from the captured 2D images, SM$3$ achieves integrated optimization of movable part and joint parameters.
Evaluations demonstrate that SM$3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
arXiv Detail & Related papers (2024-01-17T11:15:09Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - LocATe: End-to-end Localization of Actions in 3D with Transformers [91.28982770522329]
LocATe is an end-to-end approach that jointly localizes and recognizes actions in a 3D sequence.
Unlike transformer-based object-detection and classification models which consider image or patch features as input, LocATe's transformer model is capable of capturing long-term correlations between actions in a sequence.
We introduce a new, challenging, and more realistic benchmark dataset, BABEL-TAL-20 (BT20), where the performance of state-of-the-art methods is significantly worse.
arXiv Detail & Related papers (2022-03-21T03:35:32Z) - RobustFusion: Robust Volumetric Performance Reconstruction under
Human-object Interactions from Monocular RGBD Stream [27.600873320989276]
High-quality 4D reconstruction of human performance with complex interactions to various objects is essential in real-world scenarios.
Recent advances still fail to provide reliable performance reconstruction.
We propose RobustFusion, a robust volumetric performance reconstruction system for human-object interaction scenarios.
arXiv Detail & Related papers (2021-04-30T08:41:45Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.