EfficientPose 6D: Scalable and Efficient 6D Object Pose Estimation
- URL: http://arxiv.org/abs/2502.14061v1
- Date: Wed, 19 Feb 2025 19:21:23 GMT
- Title: EfficientPose 6D: Scalable and Efficient 6D Object Pose Estimation
- Authors: Zixuan Fang, Thomas Pöllabauer, Tristan Wirth, Sarah Berkei, Volker Knauthe, Arjan Kuijper,
- Abstract summary: This study focuses on developing a fast and scalable set of pose estimators based on GDRNPP to meet or exceed current benchmarks in accuracy and robustness.
We propose the AMIS algorithm to tailor the utilized model according to an application-specific trade-off between inference time and accuracy.
- Score: 4.595205112368888
- License:
- Abstract: In industrial applications requiring real-time feedback, such as quality control and robotic manipulation, the demand for high-speed and accurate pose estimation remains critical. Despite advances improving speed and accuracy in pose estimation, finding a balance between computational efficiency and accuracy poses significant challenges in dynamic environments. Most current algorithms lack scalability in estimation time, especially for diverse datasets, and the state-of-the-art (SOTA) methods are often too slow. This study focuses on developing a fast and scalable set of pose estimators based on GDRNPP to meet or exceed current benchmarks in accuracy and robustness, particularly addressing the efficiency-accuracy trade-off essential in real-time scenarios. We propose the AMIS algorithm to tailor the utilized model according to an application-specific trade-off between inference time and accuracy. We further show the effectiveness of the AMIS-based model choice on four prominent benchmark datasets (LM-O, YCB-V, T-LESS, and ITODD).
Related papers
- CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation [0.0]
CoSTI employs Consistency Training to achieve comparable imputation quality to DDPMs while drastically reducing inference times.
We evaluate CoSTI across multiple datasets and missing data scenarios, demonstrating up to a 98% reduction in imputation time with performance par with diffusion-based models.
arXiv Detail & Related papers (2025-01-31T18:14:28Z) - A Predictive Approach for Enhancing Accuracy in Remote Robotic Surgery Using Informer Model [0.0]
This paper presents a prediction model based on the Transformer-based Informer framework for accurate and efficient position estimation.
A comparison with models such as TCN, RNN, and LSTM demonstrates the Informer framework's superior performance in handling position prediction.
arXiv Detail & Related papers (2025-01-24T17:57:00Z) - The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit [46.37267466656765]
This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture.
Our experiments demonstrate how this architecture effectively decreases time without sacrificing the accuracy needed for reliable recommendation delivery.
arXiv Detail & Related papers (2025-01-04T03:26:46Z) - FAST GDRNPP: Improving the Speed of State-of-the-Art 6D Object Pose Estimation [0.0]
6D object pose estimation involves determining the three-dimensional translation and rotation of an object within a scene.
Current models, both classical and deep-learning-based, often struggle with the trade-off between accuracy and latency.
We employ several techniques to reduce the model size and improve inference time.
arXiv Detail & Related papers (2024-09-18T12:30:02Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
We propose an Uncertainty-Aware testing-time optimization framework for 3D human pose estimation.
Our approach outperforms the previous best result by a large margin of 4.5% on Human3.6M.
arXiv Detail & Related papers (2024-02-04T04:28:02Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - 6D Pose Estimation with Combined Deep Learning and 3D Vision Techniques
for a Fast and Accurate Object Grasping [0.19686770963118383]
Real-time robotic grasping is a priority target for highly advanced autonomous systems.
This paper proposes a novel method with a 2-stage approach that combines a fast 2D object recognition using a deep neural network.
The proposed solution has a potential to perform robustly on real-time applications, requiring both efficiency and accuracy.
arXiv Detail & Related papers (2021-11-11T15:36:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - EfficientPose: Scalable single-person pose estimation [3.325625311163864]
We propose a novel convolutional neural network architecture, called EfficientPose, for single-person pose estimation.
Our top-performing model achieves state-of-the-art accuracy on single-person MPII, with low-complexity ConvNets.
Due to its low complexity and efficiency, EfficientPose enables real-world applications on edge devices by limiting the memory footprint and computational cost.
arXiv Detail & Related papers (2020-04-25T16:50:46Z) - Self6D: Self-Supervised Monocular 6D Object Pose Estimation [114.18496727590481]
We propose the idea of monocular 6D pose estimation by means of self-supervised learning.
We leverage recent advances in neural rendering to further self-supervise the model on unannotated real RGB-D data.
arXiv Detail & Related papers (2020-04-14T13:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.