The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit
- URL: http://arxiv.org/abs/2501.02173v1
- Date: Sat, 04 Jan 2025 03:26:46 GMT
- Title: The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit
- Authors: Huixue Zhou, Hengrui Gu, Xi Liu, Kaixiong Zhou, Mingfu Liang, Yongkang Xiao, Srinivas Govindan, Piyush Chawla, Jiyan Yang, Xiangfei Meng, Huayu Li, Buyun Zhang, Liang Luo, Wen-Yen Chen, Yiping Han, Bo Long, Rui Zhang, Tianlong Chen,
- Abstract summary: This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture.<n>Our experiments demonstrate how this architecture effectively decreases time without sacrificing the accuracy needed for reliable recommendation delivery.
- Score: 46.37267466656765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of Large Language Models (LLMs) in recommender systems for predicting Click-Through Rates (CTR) necessitates a delicate balance between computational efficiency and predictive accuracy. This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture to concurrently enhance both aspects. By integrating Graph Convolutional Networks (GCNs) as efficient retrieval mechanisms, we are able to significantly reduce data retrieval times while maintaining high model performance. The early exit strategy employed allows for dynamic termination of model inference, utilizing real-time predictive confidence assessments across multiple heads. This not only quickens the responsiveness of LLMs but also upholds or improves their accuracy, making it ideal for real-time application scenarios. Our experiments demonstrate how this architecture effectively decreases computation time without sacrificing the accuracy needed for reliable recommendation delivery, establishing a new standard for efficient, real-time LLM deployment in commercial systems.
Related papers
- Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning? [42.362388367152256]
Large language models (LLMs) are used to fine-tune a parameter-efficient version of Code Llama using LoRA.
Our method achieves competitive or superior results in terms of Root Mean Square Error (RMSE) while significantly reducing computational overhead.
arXiv Detail & Related papers (2025-04-08T13:15:47Z) - End-to-End Dialog Neural Coreference Resolution: Balancing Efficiency and Accuracy in Large-Scale Systems [0.9752323911408618]
Large-scale coreference resolution presents a significant challenge in natural language processing.
We introduce an End-to-End Neural Coreference Resolution system tailored for large-scale applications.
Our system efficiently identifies and resolves coreference links in text, ensuring minimal computational overhead.
arXiv Detail & Related papers (2025-04-08T09:06:52Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.
Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.
We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)
RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.
RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models [26.353428245346166]
The Extract-Refine-Retrieve-Read (ERRR) framework is designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems.
Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting knowledge from Large Language Models (LLMs)
arXiv Detail & Related papers (2024-11-12T14:12:45Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - REP: Resource-Efficient Prompting for On-device Continual Learning [23.92661395403251]
On-device continual learning (CL) requires the co-optimization of model accuracy and resource efficiency to be practical.
It is commonly believed that CNN-based CL excels in resource efficiency, whereas ViT-based CL is superior in model performance.
We introduce REP, which improves resource efficiency specifically targeting prompt-based rehearsal-free methods.
arXiv Detail & Related papers (2024-06-07T09:17:33Z) - DNS-Rec: Data-aware Neural Architecture Search for Recommender Systems [79.76519917171261]
This paper addresses the computational overhead and resource inefficiency prevalent in Sequential Recommender Systems (SRSs)<n>We introduce an innovative approach combining pruning methods with advanced model designs.<n>Our principal contribution is the development of a Data-aware Neural Architecture Search for Recommender System (DNS-Rec)
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - Towards A Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms [0.49157446832511503]
This paper presents a framework for a deep learning module inference latency prediction framework.
It hosts a set of customizable input parameters to train multiple different RMs per DNN module.
It automatically selects a set of trained RMs leading to the highest possible overall prediction accuracy.
arXiv Detail & Related papers (2023-12-11T15:15:48Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.