Conformal Prediction under Lévy-Prokhorov Distribution Shifts: Robustness to Local and Global Perturbations
- URL: http://arxiv.org/abs/2502.14105v1
- Date: Wed, 19 Feb 2025 21:18:11 GMT
- Title: Conformal Prediction under Lévy-Prokhorov Distribution Shifts: Robustness to Local and Global Perturbations
- Authors: Liviu Aolaritei, Michael I. Jordan, Youssef Marzouk, Zheyu Oliver Wang, Julie Zhu,
- Abstract summary: We construct robust conformal prediction intervals that remain valid under distribution shifts.<n>We show that the link between conformal prediction and LP ambiguity sets is a natural one.<n>Building on this analysis, we construct robust conformal prediction intervals that remain valid under distribution shifts.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction provides a powerful framework for constructing prediction intervals with finite-sample guarantees, yet its robustness under distribution shifts remains a significant challenge. This paper addresses this limitation by modeling distribution shifts using L\'evy-Prokhorov (LP) ambiguity sets, which capture both local and global perturbations. We provide a self-contained overview of LP ambiguity sets and their connections to popular metrics such as Wasserstein and Total Variation. We show that the link between conformal prediction and LP ambiguity sets is a natural one: by propagating the LP ambiguity set through the scoring function, we reduce complex high-dimensional distribution shifts to manageable one-dimensional distribution shifts, enabling exact quantification of worst-case quantiles and coverage. Building on this analysis, we construct robust conformal prediction intervals that remain valid under distribution shifts, explicitly linking LP parameters to interval width and confidence levels. Experimental results on real-world datasets demonstrate the effectiveness of the proposed approach.
Related papers
- Synergy Between Sufficient Changes and Sparse Mixing Procedure for Disentangled Representation Learning [32.482584125236016]
Disentangled representation learning aims to uncover latent variables underlying the observed data.
Some approaches rely on sufficient changes on the distribution of latent variables indicated by auxiliary variables such as domain indices.
We propose an identifiability theory with less restrictive constraints regarding distribution changes and the sparse mixing procedure.
arXiv Detail & Related papers (2025-03-01T22:21:37Z) - Direct Distributional Optimization for Provable Alignment of Diffusion Models [39.048284342436666]
We introduce a novel alignment method for diffusion models from distribution optimization perspectives.
We first formulate the problem as a generic regularized loss minimization over probability distributions.
We enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique.
arXiv Detail & Related papers (2025-02-05T07:35:15Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
A distribution shift occurs when the underlying data-generating process changes, leading to a deviation in the model's performance.
The prediction interval serves as a crucial tool for characterizing uncertainties induced by their underlying distribution.
We propose methodologies for aggregating prediction intervals to obtain one with minimal width and adequate coverage on the target domain.
arXiv Detail & Related papers (2024-05-16T17:55:42Z) - Causality-oriented robustness: exploiting general additive interventions [3.871660145364189]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)
In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts.
We extend our approach to the semi-supervised domain adaptation setting to further improve prediction performance.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Global Distance-distributions Separation for Unsupervised Person
Re-identification [93.39253443415392]
Existing unsupervised ReID approaches often fail in correctly identifying the positive samples and negative samples through the distance-based matching/ranking.
We introduce a global distance-distributions separation constraint over the two distributions to encourage the clear separation of positive and negative samples from a global view.
We show that our method leads to significant improvement over the baselines and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-06-01T07:05:39Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.