A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set
- URL: http://arxiv.org/abs/2405.20124v1
- Date: Thu, 30 May 2024 15:01:18 GMT
- Title: A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set
- Authors: Man-Chung Yue, Yves Rychener, Daniel Kuhn, Viet Anh Nguyen,
- Abstract summary: We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
- Score: 20.166217494056916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically - without compelling theoretical justification - or optimally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to construct covariance estimators without imposing restrictive assumptions. That is, we study distributionally robust covariance estimation problems that minimize the worst-case Frobenius error with respect to all data distributions close to a nominal distribution, where the proximity of distributions is measured via a divergence on the space of covariance matrices. We identify mild conditions on this divergence under which the resulting minimizers represent shrinkage estimators. We show that the corresponding shrinkage transformations are intimately related to the geometrical properties of the underlying divergence. We also prove that our robust estimators are efficiently computable and asymptotically consistent and that they enjoy finite-sample performance guarantees. We exemplify our general methodology by synthesizing explicit estimators induced by the Kullback-Leibler, Fisher-Rao, and Wasserstein divergences. Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
Related papers
- Contextual Optimization under Covariate Shift: A Robust Approach by Intersecting Wasserstein Balls [18.047245099229325]
We propose a distributionally robust approach that uses an ambiguity set by the intersection of two Wasserstein balls.
We demonstrate the strong empirical performance of our proposed models.
arXiv Detail & Related papers (2024-06-04T15:46:41Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold.
We develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget.
Evaluations of our approach using data from physical applications demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
arXiv Detail & Related papers (2023-01-31T16:33:46Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
We propose a Wasserstein distributionally robust estimation framework to estimate an unknown parameter from noisy linear measurements.
We focus on the task of analyzing the squared error performance of such estimators.
We show that the squared error can be recovered as the solution of a convex-concave optimization problem.
arXiv Detail & Related papers (2022-06-27T13:02:59Z) - Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation
Approach [1.90365714903665]
We introduce a novel covariance estimator that exploits the heteroscedastic nature of financial time series.
By attenuating the noise from both the cross-sectional and time-series dimensions, we empirically demonstrate the superiority of our estimator over competing estimators.
arXiv Detail & Related papers (2020-12-10T15:41:17Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
arXiv Detail & Related papers (2020-04-11T02:15:26Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Esting Kullback-Leibler divergence from identical and independently distributed samples is an important problem in various domains.
One simple and effective estimator is based on the k nearest neighbor between these samples.
arXiv Detail & Related papers (2020-02-26T16:37:37Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.