Object-centric Binding in Contrastive Language-Image Pretraining
- URL: http://arxiv.org/abs/2502.14113v1
- Date: Wed, 19 Feb 2025 21:30:51 GMT
- Title: Object-centric Binding in Contrastive Language-Image Pretraining
- Authors: Rim Assouel, Pietro Astolfi, Florian Bordes, Michal Drozdzal, Adriana Romero-Soriano,
- Abstract summary: We propose a novel approach that diverges from commonly used strategies, which rely on the design of hard-negative augmentations.
Our work focuses on integrating inductive biases into pre-trained CLIP-like models to improve their compositional understanding without using any additional hard-negatives.
Our resulting model paves the way towards more accurate and sample-efficient image-text matching of complex scenes.
- Score: 9.376583779399834
- License:
- Abstract: Recent advances in vision language models (VLM) have been driven by contrastive models such as CLIP, which learn to associate visual information with their corresponding text descriptions. However, these models have limitations in understanding complex compositional scenes involving multiple objects and their spatial relationships. To address these challenges, we propose a novel approach that diverges from commonly used strategies, which rely on the design of hard-negative augmentations. Instead, our work focuses on integrating inductive biases into pre-trained CLIP-like models to improve their compositional understanding without using any additional hard-negatives. To that end, we introduce a binding module that connects a scene graph, derived from a text description, with a slot-structured image representation, facilitating a structured similarity assessment between the two modalities. We also leverage relationships as text-conditioned visual constraints, thereby capturing the intricate interactions between objects and their contextual relationships more effectively. Our resulting model not only enhances the performance of CLIP-based models in multi-object compositional understanding but also paves the way towards more accurate and sample-efficient image-text matching of complex scenes.
Related papers
- Causal Graphical Models for Vision-Language Compositional Understanding [36.24185263818946]
We show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin.
It also improves over methods trained using much larger datasets.
arXiv Detail & Related papers (2024-12-12T15:22:03Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - ComAlign: Compositional Alignment in Vision-Language Models [2.3250871476216814]
We introduce Compositional Alignment (ComAlign) to discover more exact correspondence of text and image components.
Our methodology emphasizes that the compositional structure extracted from the text modality must also be retained in the image modality.
We train a lightweight network lying on top of existing visual and language encoders using a small dataset.
arXiv Detail & Related papers (2024-09-12T16:46:41Z) - Hire: Hybrid-modal Interaction with Multiple Relational Enhancements for Image-Text Matching [7.7559623054251]
Image-text matching (ITM) is a fundamental problem in computer vision.
We propose a Hybrid-modal feature the Interaction with multiple Enhancements (termed textitHire) for image-text matching.
In particular, the explicit intra-modal spatial-semantic graph-based reasoning network is designed to improve the contextual representation of visual objects.
arXiv Detail & Related papers (2024-06-05T13:10:55Z) - Training-Free Consistent Text-to-Image Generation [80.4814768762066]
Text-to-image models can portray the same subject across diverse prompts.
Existing approaches fine-tune the model to teach it new words that describe specific user-provided subjects.
We present ConsiStory, a training-free approach that enables consistent subject generation by sharing the internal activations of the pretrained model.
arXiv Detail & Related papers (2024-02-05T18:42:34Z) - LLM Blueprint: Enabling Text-to-Image Generation with Complex and
Detailed Prompts [60.54912319612113]
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts.
We present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts.
Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models.
arXiv Detail & Related papers (2023-10-16T17:57:37Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning.
Recent research has highlighted severe limitations in their ability to perform compositional reasoning over objects, attributes, and relations.
arXiv Detail & Related papers (2023-05-23T08:28:38Z) - Decomposed Soft Prompt Guided Fusion Enhancing for Compositional
Zero-Shot Learning [15.406125901927004]
We propose a novel framework termed Decomposed Fusion with Soft Prompt (DFSP)1, by involving vision-language models (VLMs) for unseen composition recognition.
Specifically, DFSP constructs a vector combination of learnable soft prompts with state and object to establish the joint representation of them.
In addition, a cross-modal fusion module is designed between the language and image branches, which decomposes state and object among language features instead of image features.
arXiv Detail & Related papers (2022-11-19T12:29:12Z) - Two-stage Visual Cues Enhancement Network for Referring Image
Segmentation [89.49412325699537]
Referring Image (RIS) aims at segmenting the target object from an image referred by one given natural language expression.
In this paper, we tackle this problem by devising a Two-stage Visual cues enhancement Network (TV-Net)
Through the two-stage enhancement, our proposed TV-Net enjoys better performances in learning fine-grained matching behaviors between the natural language expression and image.
arXiv Detail & Related papers (2021-10-09T02:53:39Z) - Tensor Composition Net for Visual Relationship Prediction [115.14829858763399]
We present a novel Composition Network (TCN) to predict visual relationships in images.
The key idea of our TCN is to exploit the low rank property of the visual relationship tensor.
We show our TCN's image-level visual relationship prediction provides a simple and efficient mechanism for relation-based image retrieval.
arXiv Detail & Related papers (2020-12-10T06:27:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.