Quantum Logic Spectroscopy of an Electron and Positron for Precise Tests of the Standard Model
- URL: http://arxiv.org/abs/2502.14157v1
- Date: Wed, 19 Feb 2025 23:53:38 GMT
- Title: Quantum Logic Spectroscopy of an Electron and Positron for Precise Tests of the Standard Model
- Authors: Xing Fan, Atsushi Noguchi, Kento Taniguchi,
- Abstract summary: An electron or positron in a spectroscopy trap is coupled to a remote logic electron or positron via a wire to achieve motional entanglement.
By separating the two traps, one can significantly improve magnetic field, microwave characteristics, and detection sensitivity.
- Score: 3.9137390540328933
- License:
- Abstract: We propose a scheme for quantum logic spectroscopy of an electron or positron in a Penning trap. An electron or positron in a spectroscopy trap is coupled to a remote logic electron or positron via a wire to achieve motional entanglement. By separating the two traps, one can significantly improve magnetic field homogeneity, microwave characteristics, and detection sensitivity. The proposed scheme will improve the measurement precision of the electron's and positron's magnetic moments and charge-to-mass ratios, enabling precise tests of the Standard Model of particle physics.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Spin Resonance Spectroscopy with an Electron Microscope [0.0]
We propose a pump-probe spin resonance spectroscopy approach, based on microwave pump fields and electron probes.
We investigate how quantum spin systems couple to electron matter waves through their magnetic moments.
This could enable state-selective observation of spin dynamics on the nanoscale and indirect measurement of the environment of the examined spin systems.
arXiv Detail & Related papers (2024-01-12T10:42:47Z) - Electron-assisted manipulation of polaritonic light-matter states [0.0]
We investigate strong light-matter coupling through monochromatic and modulated electron wavepackets.
In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter.
We show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets.
arXiv Detail & Related papers (2023-12-11T16:28:32Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Mapping single electron spins with magnetic tomography [0.0]
We show a method based on rotating an external magnetic field to identify the precise location of single electron spins in the vicinity of a quantum spin sensor.
We show that the method can be used to locate electron spins with nanometer precision up to 10,nm away from the sensor.
arXiv Detail & Related papers (2022-03-09T17:14:05Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Optical Excitations with Electron Beams: Challenges and Opportunities [0.0]
We provide an overview of photonics research based on free electrons, supplemented by original theoretical insights.
We show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile.
We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy.
arXiv Detail & Related papers (2020-10-26T12:08:32Z) - Driven One-Particle Quantum Cyclotron [5.419077350924331]
A quantum cyclotron occupies only its lowest cyclotron and spin states.
The predicted rate of cyclotron and spin quantum jumps as a function of drive frequency.
Ten times more precise electron magnetic moment measurement is possible.
arXiv Detail & Related papers (2020-08-18T23:18:22Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.