Weakly-supervised Graph Meta-learning for Few-shot Node Classification
- URL: http://arxiv.org/abs/2106.06873v1
- Date: Sat, 12 Jun 2021 22:22:10 GMT
- Title: Weakly-supervised Graph Meta-learning for Few-shot Node Classification
- Authors: Kaize Ding, Jianling Wang, Jundong Li, James Caverlee and Huan Liu
- Abstract summary: We propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN)
Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data.
Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies.
- Score: 53.36828125138149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are widely used to model the relational structure of data, and the
research of graph machine learning (ML) has a wide spectrum of applications
ranging from drug design in molecular graphs to friendship recommendation in
social networks. Prevailing approaches for graph ML typically require abundant
labeled instances in achieving satisfactory results, which is commonly
infeasible in real-world scenarios since labeled data for newly emerged
concepts (e.g., new categorizations of nodes) on graphs is limited. Though
meta-learning has been applied to different few-shot graph learning problems,
most existing efforts predominately assume that all the data from those seen
classes is gold-labeled, while those methods may lose their efficacy when the
seen data is weakly-labeled with severe label noise. As such, we aim to
investigate a novel problem of weakly-supervised graph meta-learning for
improving the model robustness in terms of knowledge transfer. To achieve this
goal, we propose a new graph meta-learning framework -- Graph Hallucination
Networks (Meta-GHN) in this paper. Based on a new robustness-enhanced episodic
training, Meta-GHN is meta-learned to hallucinate clean node representations
from weakly-labeled data and extracts highly transferable meta-knowledge, which
enables the model to quickly adapt to unseen tasks with few labeled instances.
Extensive experiments demonstrate the superiority of Meta-GHN over existing
graph meta-learning studies on the task of weakly-supervised few-shot node
classification.
Related papers
- Enhancing Graph Neural Networks with Limited Labeled Data by Actively Distilling Knowledge from Large Language Models [30.867447814409623]
Graph neural networks (GNNs) have great ability in node classification, a fundamental task on graphs.
We propose a novel approach that integrates Large Language Models (LLMs) and GNNs.
Our model in improving node classification accuracy with considerably limited labeled data, surpassing state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2024-07-19T02:34:10Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Hyperbolic Graph Neural Networks at Scale: A Meta Learning Approach [19.237565246362134]
We introduce a novel method, Hyperbolic GRAph Meta Learner (H-GRAM), for the tasks of node classification and link prediction.
H-GRAM learns transferable information from a set of support local subgraphs in the form of hyperbolic meta gradients and label hyperbolic protonets.
Our comparative analysis shows that H-GRAM effectively learns and transfers information in multiple challenging few-shot settings.
arXiv Detail & Related papers (2023-10-29T06:11:49Z) - Transductive Linear Probing: A Novel Framework for Few-Shot Node
Classification [56.17097897754628]
We show that transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol.
We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.
arXiv Detail & Related papers (2022-12-11T21:10:34Z) - A Simple Yet Effective Pretraining Strategy for Graph Few-shot Learning [38.66690010054665]
We propose a simple transductive fine-tuning based framework as a new paradigm for graph few-shot learning.
For pretraining, we propose a supervised contrastive learning framework with data augmentation strategies specific for few-shot node classification.
arXiv Detail & Related papers (2022-03-29T22:30:00Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
This work explores the potential of metric-based meta-learning for solving few-shot graph classification.
An implementation upon GIN, named SMFGIN, is tested on two datasets, Chembl and TRIANGLES.
arXiv Detail & Related papers (2021-03-05T09:03:03Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification [25.883839335786025]
We propose a novel framework consisting of a graph meta-learner, which uses GNNs based modules for fast adaptation on graph data.
Our framework gets state-of-the-art results on several few-shot graph classification tasks compared to baselines.
arXiv Detail & Related papers (2020-03-18T14:38:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.