論文の概要: Adaptive Sparsified Graph Learning Framework for Vessel Behavior Anomalies
- arxiv url: http://arxiv.org/abs/2502.14197v1
- Date: Thu, 20 Feb 2025 02:01:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:08.308813
- Title: Adaptive Sparsified Graph Learning Framework for Vessel Behavior Anomalies
- Title(参考訳): 容器挙動異常に対する適応的スパーシフィケートグラフ学習フレームワーク
- Authors: Jeehong Kim, Minchan Kim, Jaeseong Ju, Youngseok Hwang, Wonhee Lee, Hyunwoo Park,
- Abstract要約: グラフニューラルネットワークは、正確なインタラクションを学習するための強力なツールとして登場した。
本稿では,エッジをタイムスタンプノードとしてモデル化した革新的なグラフ表現を提案する。
この設定は、グラフの間隔を保ちながら空間的相互作用をキャプチャするマルチシップグラフを構築するために拡張される。
- 参考スコア(独自算出の注目度): 3.3711670942444014
- License:
- Abstract: Graph neural networks have emerged as a powerful tool for learning spatiotemporal interactions. However, conventional approaches often rely on predefined graphs, which may obscure the precise relationships being modeled. Additionally, existing methods typically define nodes based on fixed spatial locations, a strategy that is ill-suited for dynamic environments like maritime environments. Our method introduces an innovative graph representation where timestamps are modeled as distinct nodes, allowing temporal dependencies to be explicitly captured through graph edges. This setup is extended to construct a multi-ship graph that effectively captures spatial interactions while preserving graph sparsity. The graph is processed using Graph Convolutional Network layers to capture spatiotemporal patterns, with a forecasting layer for feature prediction and a Variational Graph Autoencoder for reconstruction, enabling robust anomaly detection.
- Abstract(参考訳): グラフニューラルネットワークは時空間相互作用を学習するための強力なツールとして登場した。
しかし、従来のアプローチはしばしば事前定義されたグラフに依存しており、モデル化されている正確な関係を曖昧にすることができる。
さらに、既存のメソッドは通常、固定された空間的位置に基づくノードを定義するが、これは海洋環境のような動的環境に不適な戦略である。
提案手法では,タイムスタンプを異なるノードとしてモデル化し,時間的依存関係をグラフエッジを通じて明示的にキャプチャする,革新的なグラフ表現を提案する。
この設定は、グラフの間隔を保ちながら空間的相互作用を効果的にキャプチャするマルチシップグラフを構築するために拡張される。
このグラフは、グラフ畳み込みネットワーク層を使用して処理され、時空間パターンをキャプチャし、特徴予測のための予測層と再構成のための変分グラフオートエンコーダを備え、堅牢な異常検出を可能にする。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
グラフ表現学習(ネットワーク埋め込みとも呼ばれる)は、様々なレベルの粒度で広く研究されている。
本稿では,このギャップに対処する時間グラフレベルの埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T01:50:37Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
MTD-GNNは,複数種類の関係に対して時間動的エッジを予測するグラフネットワークである。
時間-動的グラフネットワークにおける複数の関係をモデル化することは相互に有益であることを示す。
論文 参考訳(メタデータ) (2022-12-06T10:41:00Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
交通予測のための新しいネットワークである空間時間適応グラフ畳み込み(STAAN)を提案する。
まず,GCN処理中に事前に定義された行列を使わずに適応的依存行列を採用し,ノード間の依存性を推定する。
第2に,グローバルな依存のために設計されたグラフアテンションネットワークに基づくPWアテンションと,空間ブロックとしてのGCNを統合した。
論文 参考訳(メタデータ) (2022-06-07T09:08:35Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。