Less is More: On the Importance of Data Quality for Unit Test Generation
- URL: http://arxiv.org/abs/2502.14212v1
- Date: Thu, 20 Feb 2025 02:47:09 GMT
- Title: Less is More: On the Importance of Data Quality for Unit Test Generation
- Authors: Junwei Zhang, Xing Hu, Shan Gao, Xin Xia, David Lo, Shanping Li,
- Abstract summary: Unit testing is crucial for software development and maintenance. Effective unit testing ensures and improves software quality, but writing unit tests is time-consuming and labor-intensive.
Recent studies have proposed deep learning (DL) techniques or large language models (LLMs) to automate unit test generation.
These models are usually trained or fine-tuned on large-scale datasets.
Despite growing awareness of the importance of data quality, there has been limited research on the quality of datasets used for test generation.
- Score: 15.396524026122972
- License:
- Abstract: Unit testing is crucial for software development and maintenance. Effective unit testing ensures and improves software quality, but writing unit tests is time-consuming and labor-intensive. Recent studies have proposed deep learning (DL) techniques or large language models (LLMs) to automate unit test generation. These models are usually trained or fine-tuned on large-scale datasets. Despite growing awareness of the importance of data quality, there has been limited research on the quality of datasets used for test generation. To bridge this gap, we systematically examine the impact of noise on the performance of learning-based test generation models. We first apply the open card sorting method to analyze the most popular and largest test generation dataset, Methods2Test, to categorize eight distinct types of noise. Further, we conduct detailed interviews with 17 domain experts to validate and assess the importance, reasonableness, and correctness of the noise taxonomy. Then, we propose CleanTest, an automated noise-cleaning framework designed to improve the quality of test generation datasets. CleanTest comprises three filters: a rule-based syntax filter, a rule-based relevance filter, and a model-based coverage filter. To evaluate its effectiveness, we apply CleanTest on two widely-used test generation datasets, i.e., Methods2Test and Atlas. Our findings indicate that 43.52% and 29.65% of datasets contain noise, highlighting its prevalence. Finally, we conduct comparative experiments using four LLMs (i.e., CodeBERT, AthenaTest, StarCoder, and CodeLlama7B) to assess the impact of noise on test generation performance. The results show that filtering noise positively influences the test generation ability of the models.
Related papers
- Context-Aware Testing: A New Paradigm for Model Testing with Large Language Models [49.06068319380296]
We introduce context-aware testing (CAT) which uses context as an inductive bias to guide the search for meaningful model failures.
We instantiate the first CAT system, SMART Testing, which employs large language models to hypothesize relevant and likely failures.
arXiv Detail & Related papers (2024-10-31T15:06:16Z) - Test smells in LLM-Generated Unit Tests [11.517293765116307]
This study explores the diffusion of test smells in Large Language Models generated unit test suites.
We analyze a benchmark of 20,500 LLM-generated test suites produced by four models across five prompt engineering techniques.
We identify and analyze the prevalence and co-occurrence of various test smells in both human written and LLM-generated test suites.
arXiv Detail & Related papers (2024-10-14T15:35:44Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under black-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
Large Language Models (LLMs) have been applied to various aspects of software development.
We present AgoneTest: an automated system for generating test suites for Java projects.
arXiv Detail & Related papers (2024-08-14T23:02:16Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptation aims to adapt the model trained on source domains to yield better predictions for test samples.
Single-Utterance Test-time Adaptation (SUTA) is the first TTA study in speech area to our best knowledge.
arXiv Detail & Related papers (2022-03-27T06:38:39Z) - TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning
Tasks [14.547623982073475]
Deep learning systems are notoriously difficult to test and debug.
It is essential to conduct test selection and label only those selected "high quality" bug-revealing test inputs for test cost reduction.
We propose a novel test prioritization technique that brings order into the unlabeled test instances according to their bug-revealing capabilities, namely TestRank.
arXiv Detail & Related papers (2021-05-21T03:41:10Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Active Testing: Sample-Efficient Model Evaluation [39.200332879659456]
We introduce active testing: a new framework for sample-efficient model evaluation.
Active testing addresses this by carefully selecting the test points to label.
We show how to remove that bias while reducing the variance of the estimator.
arXiv Detail & Related papers (2021-03-09T10:20:49Z) - The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets,
Subjective Testing Framework, and Challenge Results [27.074806625047646]
DNS Challenge is intended to promote collaborative research in real-time single-channel Speech Enhancement.
We open-sourced a large clean speech and noise corpus for training the noise suppression models.
We also open-sourced an online subjective test framework based on ITU-T P.808 for researchers to reliably test their developments.
arXiv Detail & Related papers (2020-05-16T23:48:37Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually.
Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting.
arXiv Detail & Related papers (2020-04-26T23:41:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.