Combined Quantum and Post-Quantum Security for Earth-Satellite Channels
- URL: http://arxiv.org/abs/2502.14240v1
- Date: Thu, 20 Feb 2025 04:08:23 GMT
- Title: Combined Quantum and Post-Quantum Security for Earth-Satellite Channels
- Authors: Anju Rani, Xiaoyu Ai, Aman Gupta, Ravi Singh Adhikari, Robert Malaney,
- Abstract summary: We present results from a real-time prototype quantum key distribution (QKD) system.
A unique aspect of our system is the integration of QKD with existing cryptographic methods to ensure quantum-resistant security.
Our work demonstrates, for the first time, a deployment of the BBM92 protocol that offers both post-quantum security via the advanced encryption standard (AES) and quantum security via an entanglement-based QKD protocol.
- Score: 3.835450563934687
- License:
- Abstract: Experimental deployment of quantum communication over Earth-satellite channels opens the way to a secure global quantum Internet. In this work, we present results from a real-time prototype quantum key distribution (QKD) system, which entails the development of optical systems including the encoding of entangled photon pairs, the development of transmitters for quantum signaling through an emulated Earth-satellite channel, and the development of quantum-decoding receivers. A unique aspect of our system is the integration of QKD with existing cryptographic methods to ensure quantum-resistant security, even at low-key rates. In addition, we report the use of specially designed error-reconciliation codes that optimize the security versus key-rate trade-off. Our work demonstrates, for the first time, a deployment of the BBM92 protocol that offers both post-quantum security via the advanced encryption standard (AES) and quantum security via an entanglement-based QKD protocol. If either the AES or the QKD is compromised through some adversary attack, our system still delivers state-of-the-art communications secure against future quantum computers.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Security Enhancement of Quantum Communication in Space-Air-Ground Integrated Networks [7.404591865944407]
Quantum teleportation achieves the transmission of quantum states through quantum channels.
We propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels.
arXiv Detail & Related papers (2024-10-22T14:27:21Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Satellite-based Quantum Network: Security and Challenges over
Atmospheric Channel [32.17201108512485]
We review the quantum states and channel properties for satellite-based quantum networks and long-range quantum state transfer.
We highlight some challenges, such as transmissivity statistics, estimation of channel parameters and attack resilience.
arXiv Detail & Related papers (2023-07-29T17:54:15Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.