論文の概要: OrchardDepth: Precise Metric Depth Estimation of Orchard Scene from Monocular Camera Images
- arxiv url: http://arxiv.org/abs/2502.14279v1
- Date: Thu, 20 Feb 2025 05:40:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:27:29.047883
- Title: OrchardDepth: Precise Metric Depth Estimation of Orchard Scene from Monocular Camera Images
- Title(参考訳): オーチャード深度:単眼カメラ画像からのオーチャードシーンの精密距離推定
- Authors: Zhichao Zheng, Henry Williams, Bruce A MacDonald,
- Abstract要約: 果樹園環境における単眼カメラのメートル法深度推定のギャップを埋めるOrchardDepthを提案する。
さらに,深度マップとスパースポイント間の一貫した正規化をモニタリングすることにより,トレーニング結果を改善するための新たなトレーニング手法を提案する。
- 参考スコア(独自算出の注目度): 3.3152016226925913
- License:
- Abstract: Monocular depth estimation is a rudimentary task in robotic perception. Recently, with the development of more accurate and robust neural network models and different types of datasets, monocular depth estimation has significantly improved performance and efficiency. However, most of the research in this area focuses on very concentrated domains. In particular, most of the benchmarks in outdoor scenarios belong to urban environments for the improvement of autonomous driving devices, and these benchmarks have a massive disparity with the orchard/vineyard environment, which is hardly helpful for research in the primary industry. Therefore, we propose OrchardDepth, which fills the gap in the estimation of the metric depth of the monocular camera in the orchard/vineyard environment. In addition, we present a new retraining method to improve the training result by monitoring the consistent regularization between dense depth maps and sparse points. Our method improves the RMSE of depth estimation in the orchard environment from 1.5337 to 0.6738, proving our method's validation.
- Abstract(参考訳): 単眼深度推定はロボット知覚における初歩的な課題である。
近年、より正確で堅牢なニューラルネットワークモデルと異なるタイプのデータセットの開発により、単眼深度推定は性能と効率を大幅に改善した。
しかし、この分野の研究の大部分は、非常に集中したドメインに焦点を当てている。
特に、屋外シナリオにおけるベンチマークのほとんどは、自律運転装置の改善のための都市環境に属しており、これらのベンチマークは果樹園環境と大きな相違があり、初等産業の研究にはほとんど役に立たない。
そこで本研究では,果樹園環境における単眼カメラのメートル法深度推定のギャップを埋めるOrchardDepthを提案する。
さらに,深度マップとスパースポイント間の一貫した正規化をモニタリングすることにより,トレーニング結果を改善するための新たなトレーニング手法を提案する。
本手法は果樹園環境における深度推定のRMSEを1.5337から0.6738に改善し,本手法の有効性を実証する。
関連論文リスト
- Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
カメラによる鳥眼視(BEV)知覚パラダイムは、自律運転分野において大きな進歩を遂げている。
画像平面のインスタンス認識をBEV検出器内の深度推定プロセスに統合するIA-BEVを提案する。
論文 参考訳(メタデータ) (2023-12-13T09:24:42Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
単色深度推定の目標は、入力として2次元単色RGB画像が与えられた深度マップを予測することである。
我々は、トレーニング中に固有のカメラパラメータを実行し、我々のモデルをさらに一般化するために天気増悪を適用することを計画している。
論文 参考訳(メタデータ) (2023-04-14T07:14:08Z) - FG-Depth: Flow-Guided Unsupervised Monocular Depth Estimation [17.572459787107427]
そこで本研究では,典型的な測光損失を代替する流量蒸留損失と,不適切な画素を除去するための前向きフローベースマスクを提案する。
提案手法は,KITTIとNYU-Depth-v2の両方のデータセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2023-01-20T04:02:13Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
スパイクカメラのための単分子およびステレオ深度推定ネットワークの予測を融合させる新しい不確かさ誘導深度融合(UGDF)フレームワークを提案する。
我々のフレームワークは、ステレオスパイク深さ推定がより近い範囲でより良い結果をもたらすという事実に動機づけられている。
従来のカメラ深度推定よりもスパイク深度推定の利点を示すため、我々はCitySpike20Kというスパイク深度データセットに貢献する。
論文 参考訳(メタデータ) (2022-08-26T13:04:01Z) - MonoIndoor++:Towards Better Practice of Self-Supervised Monocular Depth
Estimation for Indoor Environments [45.89629401768049]
自己監督型単分子深度推定は近年,特に屋外環境において顕著な進歩を遂げている。
しかし、既存のデータの大半を携帯端末で捉えている屋内シーンでは、深度予測結果は満足できない。
室内環境における自己教師型単眼深度推定の性能向上を目的とした,新しいフレームワーク-IndoorMono++を提案する。
論文 参考訳(メタデータ) (2022-07-18T21:34:43Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
本稿では,事前学習した教師付き単分子深度ネットワークに対する自己教師付き学習手法を提案する。
本手法は移動ロボットナビゲーションなどの様々な応用に有用であり,多様な環境に適用可能である。
論文 参考訳(メタデータ) (2022-03-10T12:28:42Z) - Improving Depth Estimation using Location Information [0.0]
本稿では,自己教師型深度学習法の改良を行い,高精度な単眼深度推定を行う。
主なアイデアは、異なるフレームのシーケンスを考慮に入れたディープモデルをトレーニングすることであり、各フレームはその位置情報でタグ付けされる。
論文 参考訳(メタデータ) (2021-12-27T22:30:14Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
本稿では,自己教師付ステレオマッチング法から生成されたステレオ画像の擬似地上真実深度マップを利用する新しい手法を提案する。
擬似地底深度マップの信頼度マップを推定し、不正確な擬似地底深度マップによる性能劣化を緩和する。
実験結果から, 最先端の単分子深度推定法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-27T13:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。