論文の概要: Generalization Certificates for Adversarially Robust Bayesian Linear Regression
- arxiv url: http://arxiv.org/abs/2502.14298v1
- Date: Thu, 20 Feb 2025 06:25:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:34.203396
- Title: Generalization Certificates for Adversarially Robust Bayesian Linear Regression
- Title(参考訳): 逆ロバストベイズ線形回帰のための一般化証明書
- Authors: Mahalakshmi Sabanayagam, Russell Tsuchida, Cheng Soon Ong, Debarghya Ghoshdastidar,
- Abstract要約: 機械学習モデルの逆ロバスト性は、データ摂動下での信頼性の高い性能を保証するために重要である。
近年, 点推定器の進歩が見られ, 分布予測器について考察する。
実および合成データセットの実験は、ベイズ後部の逆向きに頑健な後部の優れた強靭性を示す。
- 参考スコア(独自算出の注目度): 16.3368950151084
- License:
- Abstract: Adversarial robustness of machine learning models is critical to ensuring reliable performance under data perturbations. Recent progress has been on point estimators, and this paper considers distributional predictors. First, using the link between exponential families and Bregman divergences, we formulate an adversarial Bregman divergence loss as an adversarial negative log-likelihood. Using the geometric properties of Bregman divergences, we compute the adversarial perturbation for such models in closed-form. Second, under such losses, we introduce \emph{adversarially robust posteriors}, by exploiting the optimization-centric view of generalized Bayesian inference. Third, we derive the \emph{first} rigorous generalization certificates in the context of an adversarial extension of Bayesian linear regression by leveraging the PAC-Bayesian framework. Finally, experiments on real and synthetic datasets demonstrate the superior robustness of the derived adversarially robust posterior over Bayes posterior, and also validate our theoretical guarantees.
- Abstract(参考訳): 機械学習モデルの逆ロバスト性は、データ摂動下での信頼性の高い性能を保証するために重要である。
近年, 点推定器の進歩が見られ, 分布予測器について考察する。
第一に、指数族とブレグマンの発散との関係を用いて、逆対向的な負の対数類似度として、逆逆のブレグマン発散損失を定式化する。
ブレグマン発散の幾何学的性質を用いて、そのようなモデルに対する逆摂動を閉形式で計算する。
第二に、一般化されたベイズ予想の最適化中心の視点を活用することにより、そのような損失の下で \emph{adversarially robust rears} を導入する。
第三に、PAC-ベイズフレームワークを利用してベイズ線形回帰の逆拡張の文脈で、厳密な一般化証明を導出する。
最後に、実データと合成データセットに関する実験により、ベイズ後部よりも逆向きに頑健な後部の優れた強靭性を示し、理論的な保証を検証した。
関連論文リスト
- Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
本稿では,償却ベイズ推定の効率と精度を向上させる手法を提案する。
我々は,関節モデルの近似表現に基づいて限界確率を推定する。
論文 参考訳(メタデータ) (2023-10-06T17:41:41Z) - Causality-oriented robustness: exploiting general additive interventions [3.871660145364189]
本稿では因果性指向のロバスト性に着目し,不変勾配(DRIG)を用いた分布ロバスト性を提案する。
線形環境では、DRIGがデータ依存の分布シフトのクラスの中で頑健な予測を得られることを証明している。
我々は、予測性能をさらに向上させるために、半教師付きドメイン適応設定にアプローチを拡張した。
論文 参考訳(メタデータ) (2023-07-18T16:22:50Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
償却ベイズ推論は、当初シミュレーションデータ上の推論ネットワークのトレーニングに計算コストを投資することを目的としている。
観測対象のほとんど認識不能な摂動は、予測された後部および非現実的な後部予測標本に劇的な変化をもたらす可能性があることを示す。
本研究では,条件密度推定器のフィッシャー情報をペナライズした計算効率の高い正規化手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:18:45Z) - Explicit Tradeoffs between Adversarial and Natural Distributional
Robustness [48.44639585732391]
実際、モデルは信頼性を確保するために両方のタイプの堅牢さを享受する必要があります。
本研究では, 対角線と自然分布の強靭性の間には, 明らかなトレードオフが存在することを示す。
論文 参考訳(メタデータ) (2022-09-15T19:58:01Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
表現を学習すると同時に、正確な一般化境界と堅牢性証明を与えるモデルを考える。
線形エンコーダと組み合わされたスパーシティプロモーティングエンコーダを組み合わせた仮説クラスに着目した。
エンドツーエンドの分類のための堅牢性証明を提供する。
論文 参考訳(メタデータ) (2020-10-22T22:05:21Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
古典的ベイズ推定の質は、観測結果が推定データ生成モデルに適合するかどうかに大きく依存する。
本稿では,大容量データセットに同時スケール可能な変分推論手法を提案する。
多様なシミュレーションおよび実データ、および様々な統計モデルにおいて、我々のアプローチの適用性について説明する。
論文 参考訳(メタデータ) (2020-08-31T13:47:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。