ODVerse33: Is the New YOLO Version Always Better? A Multi Domain benchmark from YOLO v5 to v11
- URL: http://arxiv.org/abs/2502.14314v1
- Date: Thu, 20 Feb 2025 06:57:58 GMT
- Title: ODVerse33: Is the New YOLO Version Always Better? A Multi Domain benchmark from YOLO v5 to v11
- Authors: Tianyou Jiang, Yang Zhong,
- Abstract summary: Key questions arise with the increasing frequency of new YOLO versions being released.
What are the core innovations in each YOLO version and how do these changes translate into real-world performance gains?
In this paper, we summarize the key innovations from YOLOv1 to YOLOv11, introduce a comprehensive benchmark called ODverse33, and explore the practical impact of model improvements in real-world, multi-domain applications.
- Score: 6.553031877558699
- License:
- Abstract: You Look Only Once (YOLO) models have been widely used for building real-time object detectors across various domains. With the increasing frequency of new YOLO versions being released, key questions arise. Are the newer versions always better than their previous versions? What are the core innovations in each YOLO version and how do these changes translate into real-world performance gains? In this paper, we summarize the key innovations from YOLOv1 to YOLOv11, introduce a comprehensive benchmark called ODverse33, which includes 33 datasets spanning 11 diverse domains (Autonomous driving, Agricultural, Underwater, Medical, Videogame, Industrial, Aerial, Wildlife, Retail, Microscopic, and Security), and explore the practical impact of model improvements in real-world, multi-domain applications through extensive experimental results. We hope this study can provide some guidance to the extensive users of object detection models and give some references for future real-time object detector development.
Related papers
- YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review [0.0]
This study presents a comprehensive and in-depth architecture comparison of the four most recent YOLO models.
The analysis reveals that while each version of YOLO has improvements in architecture and feature extraction, certain blocks remain unchanged.
arXiv Detail & Related papers (2025-01-23T05:57:13Z) - YOLO-UniOW: Efficient Universal Open-World Object Detection [63.71512991320627]
We introduce Universal Open-World Object Detection (Uni-OWD), a new paradigm that unifies open-vocabulary and open-world object detection tasks.
YOLO-UniOW incorporates Adaptive Decision Learning to replace computationally expensive cross-modality fusion with lightweight alignment in the CLIP latent space.
Experiments validate the superiority of YOLO-UniOW, achieving 34.6 AP and 30.0 APr with an inference speed of 69.6 FPS.
arXiv Detail & Related papers (2024-12-30T01:34:14Z) - YOLO11 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series [6.751138557596013]
This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to YOLOv11.
The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and Artificial General Intelligence (AGI) systems for the next YOLO decade.
arXiv Detail & Related papers (2024-06-12T06:41:23Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Model Compression Methods for YOLOv5: A Review [1.2387676601792899]
We focus on pruning and quantization due to their comparative modularity.
This is the first specific review paper that surveys pruning and quantization methods from an implementation point of view on YOLOv5.
Our study is also extendable to newer versions of YOLO as implementing them on resource-limited devices poses the same challenges that persist even today.
arXiv Detail & Related papers (2023-07-21T21:07:56Z) - A Comprehensive Review of YOLO Architectures in Computer Vision: From
YOLOv1 to YOLOv8 and YOLO-NAS [0.0]
YOLO has become a central real-time object detection system for robotics, driverless cars, and video monitoring applications.
We present a comprehensive analysis of YOLO's evolution, examining the innovations and contributions in each iteration from the original YOLO up to YOLOv8, YOLO-NAS, and YOLO with Transformers.
arXiv Detail & Related papers (2023-04-02T10:27:34Z) - YOLOv6: A Single-Stage Object Detection Framework for Industrial
Applications [16.047499394184985]
YOLOv6-N hits 35.9% AP on the COCO dataset at a throughput of 1234 FPS on an NVIDIA Tesla T4 GPU.
YOLOv6-S strikes 43.5% AP at 495 FPS, outperforming other mainstream detectors at the same scale.
YOLOv6-M/L achieves better accuracy performance (i.e., 49.5%/52.3%) than other detectors with a similar inference speed.
arXiv Detail & Related papers (2022-09-07T07:47:58Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
We revisit the self-supervised multi-task learning framework, proposing several updates to the original method.
We modernize the 3D convolutional backbone by introducing multi-head self-attention modules.
In our attempt to further improve the model, we study additional self-supervised learning tasks, such as predicting segmentation maps.
arXiv Detail & Related papers (2022-07-16T19:25:41Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.