A Macro- and Micro-Hierarchical Transfer Learning Framework for Cross-Domain Fake News Detection
- URL: http://arxiv.org/abs/2502.14403v1
- Date: Thu, 20 Feb 2025 09:39:44 GMT
- Title: A Macro- and Micro-Hierarchical Transfer Learning Framework for Cross-Domain Fake News Detection
- Authors: Xuankai Yang, Yan Wang, Xiuzhen Zhang, Shoujin Wang, Huaxiong Wang, Kwok Yan Lam,
- Abstract summary: Cross-domain fake news detection aims to mitigate domain shift and improve detection performance by transferring knowledge across domains.
Existing approaches transfer knowledge based on news content and user engagements from a source domain to a target domain.
We propose a novel macro- and micro- hierarchical transfer learning framework (MMHT) for cross-domain fake news detection.
- Score: 26.078838508339057
- License:
- Abstract: Cross-domain fake news detection aims to mitigate domain shift and improve detection performance by transferring knowledge across domains. Existing approaches transfer knowledge based on news content and user engagements from a source domain to a target domain. However, these approaches face two main limitations, hindering effective knowledge transfer and optimal fake news detection performance. Firstly, from a micro perspective, they neglect the negative impact of veracity-irrelevant features in news content when transferring domain-shared features across domains. Secondly, from a macro perspective, existing approaches ignore the relationship between user engagement and news content, which reveals shared behaviors of common users across domains and can facilitate more effective knowledge transfer. To address these limitations, we propose a novel macro- and micro- hierarchical transfer learning framework (MMHT) for cross-domain fake news detection. Firstly, we propose a micro-hierarchical disentangling module to disentangle veracity-relevant and veracity-irrelevant features from news content in the source domain for improving fake news detection performance in the target domain. Secondly, we propose a macro-hierarchical transfer learning module to generate engagement features based on common users' shared behaviors in different domains for improving effectiveness of knowledge transfer. Extensive experiments on real-world datasets demonstrate that our framework significantly outperforms the state-of-the-art baselines.
Related papers
- Federated Graph Learning for Cross-Domain Recommendation [33.33321213257222]
Cross-domain recommendation (CDR) offers a promising solution to the data sparsity problem by enabling knowledge transfer across source and target domains.
We propose FedGCDR, a novel graph learning framework that securely and effectively leverages positive knowledge from multiple source domains.
We conduct extensive experiments on 16 popular domains of the Amazon dataset, demonstrating that FedGCDR significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T12:19:51Z) - STYLE: Improving Domain Transferability of Asking Clarification Questions in Large Language Model Powered Conversational Agents [67.05207285885722]
LLM-based clarification strategies feature rapid transfer to various domains in a post-hoc manner.
Existing methods tend to produce one-size-fits-all strategies across diverse domains, limiting their search effectiveness.
We introduce a novel method, called Style, to achieve effective domain transferability.
arXiv Detail & Related papers (2024-05-20T14:28:25Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Emotion-guided Cross-domain Fake News Detection using Adversarial Domain
Adaptation [14.428215696969872]
We evaluate the impact of emotion-guided features for cross-domain fake news detection.
We propose an emotion-guided, domain-adaptive approach using adversarial learning.
arXiv Detail & Related papers (2022-11-24T17:11:56Z) - Improving Fake News Detection of Influential Domain via Domain- and
Instance-Level Transfer [16.886024206337257]
We propose a Domain- and Instance-level Transfer Framework for Fake News Detection (DITFEND)
DITFEND could improve the performance of specific target domains.
Online experiments show that it brings additional improvements over the base models in a real-world scenario.
arXiv Detail & Related papers (2022-09-19T10:21:13Z) - Domain Adaptive Fake News Detection via Reinforcement Learning [34.95213747705498]
We introduce a novel reinforcement learning-based model called REAL-FND to detect fake news.
Experiments on real-world datasets illustrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-02-16T16:05:37Z) - Multilevel Knowledge Transfer for Cross-Domain Object Detection [26.105283273950942]
Domain shift is a well known problem where a model trained on a particular domain (source) does not perform well when exposed to samples from a different domain (target)
In this work, we address the domain shift problem for the object detection task.
Our approach relies on gradually removing the domain shift between the source and the target domains.
arXiv Detail & Related papers (2021-08-02T15:24:40Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Continuous Domain Adaptation with Variational Domain-Agnostic Feature
Replay [78.7472257594881]
Learning in non-stationary environments is one of the biggest challenges in machine learning.
Non-stationarity can be caused by either task drift, or the domain drift.
We propose variational domain-agnostic feature replay, an approach that is composed of three components.
arXiv Detail & Related papers (2020-03-09T19:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.