論文の概要: LLM4FaaS: No-Code Application Development using LLMs and FaaS
- arxiv url: http://arxiv.org/abs/2502.14450v1
- Date: Thu, 20 Feb 2025 11:05:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:24.772480
- Title: LLM4FaaS: No-Code Application Development using LLMs and FaaS
- Title(参考訳): LLM4FaaS: LLMとFaaSを使ったノーコードアプリケーション開発
- Authors: Minghe Wang, Tobias Pfandzelter, Trever Schirmer, David Bermbach,
- Abstract要約: 非技術者のユーザは一般的に、生成されたコードを実行、デプロイ、運用する専門知識が欠けている。
これは、そのようなユーザーがアプリケーション開発に大規模な言語モデルのパワーを利用するための障壁となる。
LLMとFプラットフォームを組み合わせた新しいノーコードアプリケーション開発手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) are powerful tools that can generate code from natural language descriptions. While this theoretically enables non-technical users to develop their own applications, they typically lack the expertise to execute, deploy, and operate generated code. This poses a barrier for such users to leverage the power of LLMs for application development. In this paper, we propose leveraging the high levels of abstraction of the Function-as-a-Service (FaaS) paradigm to handle code execution and operation for non-technical users. FaaS offers function deployment without handling the underlying infrastructure, enabling users to execute LLM-generated code without concern for its operation and without requiring any technical expertise. We propose LLM4FaaS, a novel no-code application development approach that combines LLMs and FaaS platforms to enable non-technical users to build and run their own applications using only natural language descriptions. Specifically, LLM4FaaS takes user prompts, uses LLMs to generate function code based on those prompts, and deploys these functions through a FaaS platform that handles the application's operation. LLM4FaaS also leverages the FaaS infrastructure abstractions to reduce the task complexity for the LLM, improving result accuracy. We evaluate LLM4FaaS with a proof-of-concept implementation based on GPT-4o and an open-source FaaS platform, using real prompts from non-technical users. Our evaluation based on these real user prompts demonstrates the feasibility of our approach and shows that LLM4FaaS can reliably build and deploy code in 71.47% of cases, up from 43.48% in a baseline without FaaS.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語記述からコードを生成する強力なツールである。
これは理論的には非技術者が独自のアプリケーションを開発することを可能にするが、通常は生成されたコードの実行、デプロイ、運用に関する専門知識が欠如している。
このことは、ユーザがアプリケーション開発にLLMのパワーを利用するための障壁となる。
本稿では、FaaS(Function-as-a-Service)パラダイムの高レベルの抽象化を活用して、非技術ユーザのためのコード実行と操作を処理することを提案する。
FaaSは基盤となるインフラストラクチャを扱うことなく、ファンクションデプロイメントを提供しており、ユーザはその操作を気にせず、技術的な専門知識も必要とせずに、LLM生成コードを実行できる。
LLMとFaaSプラットフォームを組み合わせた,新たなノーコードアプリケーション開発アプローチであるLLM4FaaSを提案する。
具体的には、LLM4FaaSはユーザプロンプトを受け取り、それらのプロンプトに基づいて関数コードを生成し、アプリケーションの操作を処理するFaaSプラットフォームを介してこれらの関数をデプロイする。
LLM4FaaSはまた、FaaSインフラストラクチャの抽象化を活用して、LLMのタスクの複雑さを低減し、結果の正確性を向上させる。
GPT-4oとオープンソースのFaaSプラットフォームをベースとした概念実証実装によるLLM4FaaSの評価を行った。
これらの実際のユーザプロンプトに基づく評価は、私たちのアプローチの実現可能性を示し、LLM4FaaSが71.47%のケースで、FaaSのないベースラインで43.48%から確実にコードをビルドおよびデプロイできることを示している。
関連論文リスト
- zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Learning to Ask: When LLM Agents Meet Unclear Instruction [55.65312637965779]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - DeceptPrompt: Exploiting LLM-driven Code Generation via Adversarial
Natural Language Instructions [27.489622263456983]
DeceptPromptは、コードLLMを駆動し、脆弱性のある機能の正しいコードを生成する、逆の自然言語命令を生成するアルゴリズムである。
最適化プレフィックス/サフィックスを適用する場合、アタック成功率(ASR)はプレフィックス/サフィックスを適用せずに平均50%向上する。
論文 参考訳(メタデータ) (2023-12-07T22:19:06Z) - Function-constrained Program Synthesis [12.55507214959886]
大規模言語モデル(LLM)は、開発環境で利用可能なすべてのコードを描画することで、リアルタイムでコードを生成することができる。
現在のシステムには効果的なリカバリ方法が欠如しており、ユーザーは十分な解に到達するまで、修正されたプロンプトでモデルを反復的に再起動せざるを得ない。
提案手法は,コード生成を明示的な関数集合に制約し,自動生成されたサブ関数を通じて失敗した試行からのリカバリを可能にする。
論文 参考訳(メタデータ) (2023-11-27T02:55:34Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - AskIt: Unified Programming Interface for Programming with Large Language
Models [0.0]
大規模言語モデル(LLM)は創発能力として知られるユニークな現象を示し、多くのタスクにまたがって適応性を示す。
本稿では,LLM用に特別に設計されたドメイン固有言語であるAskItを紹介する。
50タスクにわたって、AskItは簡潔なプロンプトを生成し、ベンチマークよりも16.14パーセントのプロンプト長の削減を実現した。
論文 参考訳(メタデータ) (2023-08-29T21:44:27Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。