Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance
- URL: http://arxiv.org/abs/2502.14520v1
- Date: Thu, 20 Feb 2025 12:52:36 GMT
- Title: Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance
- Authors: Meng Wang, Fan Wu, Ruihui Li, Yunchuan Qin, Zhuo Tang, Kenli Li,
- Abstract summary: 3D Semantic Scene Completion (SSC) provides comprehensive scene geometry and semantics for autonomous driving perception.<n>Existing SSC methods are limited to capturing sparse information from the current frame or naively stacking multi-frame temporal features.<n>We propose a novel temporal SSC method FlowScene: Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance.
- Score: 37.61183525419993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Semantic Scene Completion (SSC) provides comprehensive scene geometry and semantics for autonomous driving perception, which is crucial for enabling accurate and reliable decision-making. However, existing SSC methods are limited to capturing sparse information from the current frame or naively stacking multi-frame temporal features, thereby failing to acquire effective scene context. These approaches ignore critical motion dynamics and struggle to achieve temporal consistency. To address the above challenges, we propose a novel temporal SSC method FlowScene: Learning Temporal 3D Semantic Scene Completion via Optical Flow Guidance. By leveraging optical flow, FlowScene can integrate motion, different viewpoints, occlusions, and other contextual cues, thereby significantly improving the accuracy of 3D scene completion. Specifically, our framework introduces two key components: (1) a Flow-Guided Temporal Aggregation module that aligns and aggregates temporal features using optical flow, capturing motion-aware context and deformable structures; and (2) an Occlusion-Guided Voxel Refinement module that injects occlusion masks and temporally aggregated features into 3D voxel space, adaptively refining voxel representations for explicit geometric modeling. Experimental results demonstrate that FlowScene achieves state-of-the-art performance on the SemanticKITTI and SSCBench-KITTI-360 benchmarks.
Related papers
- One Step Closer: Creating the Future to Boost Monocular Semantic Scene Completion [3.664655957801223]
In real-world traffic scenarios, a significant portion of a visual 3D scene remains occluded or outside the camera's field of view.<n>We propose Creating the Future SSC, a novel temporal SSC framework that leverages pseudo-future frame prediction to expand the model's effective perceptual range.<n>Our approach combines poses and depths to establish accurate 3D correspondences, enabling geometrically-consistent fusion of past, present, and predicted future frames in 3D space.
arXiv Detail & Related papers (2025-07-18T10:24:58Z) - SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.
We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.
With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.
This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.
For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.
The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
arXiv Detail & Related papers (2025-03-14T13:15:54Z) - Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Let Occ Flow is the first self-supervised work for joint 3D occupancy and occupancy flow prediction using only camera inputs.
Our approach incorporates a novel attention-based temporal fusion module to capture dynamic object dependencies.
Our method extends differentiable rendering to 3D volumetric flow fields.
arXiv Detail & Related papers (2024-07-10T12:20:11Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
We present HTCL, a novel Temporal Temporal Context Learning paradigm for improving camera-based semantic scene completion.
Our method ranks $1st$ on the Semantic KITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU.
arXiv Detail & Related papers (2024-07-02T09:11:17Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
Temporal sentence grounding aims to localize a target segment in an untrimmed video semantically according to a given sentence query.
Most previous works focus on learning frame-level features of each whole frame in the entire video, and directly match them with the textual information.
We propose a novel Motion- and Appearance-guided 3D Semantic Reasoning Network (MA3SRN), which incorporates optical-flow-guided motion-aware, detection-based appearance-aware, and 3D-aware object-level features.
arXiv Detail & Related papers (2022-03-06T13:57:09Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
We introduce a multi-frame monocular scene flow network based on self-supervised learning.
We observe state-of-the-art accuracy among monocular scene flow methods based on self-supervised learning.
arXiv Detail & Related papers (2021-05-05T17:49:55Z) - Self-Supervised Monocular Scene Flow Estimation [27.477810324117016]
We propose a novel monocular scene flow method that yields competitive accuracy and real-time performance.
By taking an inverse problem view, we design a single convolutional neural network (CNN) that successfully estimates depth and 3D motion simultaneously.
arXiv Detail & Related papers (2020-04-08T17:55:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.