EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation
- URL: http://arxiv.org/abs/2503.11371v2
- Date: Mon, 17 Mar 2025 02:12:39 GMT
- Title: EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation
- Authors: Zengyu Wan, Wei Zhai, Yang Cao, Zhengjun Zha,
- Abstract summary: Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.<n>This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.<n>For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.<n>The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
- Score: 59.33052312107478
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visual 3D motion estimation aims to infer the motion of 2D pixels in 3D space based on visual cues. The key challenge arises from depth variation induced spatio-temporal motion inconsistencies, disrupting the assumptions of local spatial or temporal motion smoothness in previous motion estimation frameworks. In contrast, event cameras offer new possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes. This paper presents EMoTive, a novel event-based framework that models spatio-temporal trajectories via event-guided non-uniform parametric curves, effectively characterizing locally heterogeneous spatio-temporal motion. Specifically, we first introduce Event Kymograph - an event projection method that leverages a continuous temporal projection kernel and decouples spatial observations to encode fine-grained temporal evolution explicitly. For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance, coupled with a non-uniform rational curve parameterization framework to adaptively model heterogeneous trajectories. The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, yielding optical flow and depth motion fields. To facilitate evaluation, we introduce CarlaEvent3D, a multi-dynamic synthetic dataset for comprehensive validation. Extensive experiments on both this dataset and a real-world benchmark demonstrate the effectiveness of the proposed method.
Related papers
- POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction [53.19968902152528]
We present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion.
Specifically, our method learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps.
We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks.
arXiv Detail & Related papers (2025-04-08T05:33:13Z) - Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>It tackles the challenges posed by spatial sparsity and motion sensitivity in events.<n>It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
We introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information.
We have conducted experiments on the aggregation and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance.
arXiv Detail & Related papers (2024-09-06T16:29:04Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - Event-based Structure-from-Orbit [23.97673114572094]
Certain applications in robotics and vision-based navigation require 3D perception of an object undergoing circular or spinning motion in front of a static camera.
We propose event-based structure-from-orbit (eSf), where the aim is to reconstruct the 3D structure of a fast spinning object observed from a static event camera.
arXiv Detail & Related papers (2024-05-10T03:02:03Z) - DEMOS: Dynamic Environment Motion Synthesis in 3D Scenes via Local
Spherical-BEV Perception [54.02566476357383]
We propose the first Dynamic Environment MOtion Synthesis framework (DEMOS) to predict future motion instantly according to the current scene.
We then use it to dynamically update the latent motion for final motion synthesis.
The results show our method outperforms previous works significantly and has great performance in handling dynamic environments.
arXiv Detail & Related papers (2024-03-04T05:38:16Z) - Detecting Moving Objects Using a Novel Optical-Flow-Based
Range-Independent Invariant [0.0]
We present an optical-flow-based transformation that yields a consistent 2D invariant image output regardless of time instants, range of points in 3D, and the speed of the camera.
In the new domain, projections of 3D points that deviate from the values of the predefined lookup image can be clearly identified as moving relative to the stationary 3D environment.
arXiv Detail & Related papers (2023-10-14T17:42:19Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
Event cameras open up new possibilities for robotic perception due to their low latency and high dynamic range.
We focus on event-based visual odometry (VO)
We propose an asynchronous structure-from-motion optimisation back-end.
arXiv Detail & Related papers (2022-03-02T11:28:47Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
We propose a method for jointly estimating the 3D motion, 3D shape, and appearance of highly motion-blurred objects from a video.
Experiments on benchmark datasets demonstrate that our method outperforms previous methods for fast moving object deblurring and 3D reconstruction.
arXiv Detail & Related papers (2021-11-29T11:25:14Z) - Motion Deblurring with Real Events [50.441934496692376]
We propose an end-to-end learning framework for event-based motion deblurring in a self-supervised manner.
Real-world events are exploited to alleviate the performance degradation caused by data inconsistency.
arXiv Detail & Related papers (2021-09-28T13:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.