Investigating the Generalizability of ECG Noise Detection Across Diverse Data Sources and Noise Types
- URL: http://arxiv.org/abs/2502.14522v1
- Date: Thu, 20 Feb 2025 12:54:56 GMT
- Title: Investigating the Generalizability of ECG Noise Detection Across Diverse Data Sources and Noise Types
- Authors: Sharmad Kalpande, Nilesh Kumar Sahu, Haroon Lone,
- Abstract summary: We investigate the generalizability of noise detection in ECG using a novel HRV-based approach through cross-dataset experiments.
Our results show that machine learning achieves an average accuracy of over 90% and an AUPRC of more than 0.9.
- Score: 0.0
- License:
- Abstract: Electrocardiograms (ECGs) are essential for monitoring cardiac health, allowing clinicians to analyze heart rate variability (HRV), detect abnormal rhythms, and diagnose cardiovascular diseases. However, ECG signals, especially those from wearable devices, are often affected by noise artifacts caused by motion, muscle activity, or device-related interference. These artifacts distort R-peaks and the characteristic QRS complex, making HRV analysis unreliable and increasing the risk of misdiagnosis. Despite this, the few existing studies on ECG noise detection have primarily focused on a single dataset, limiting the understanding of how well noise detection models generalize across different datasets. In this paper, we investigate the generalizability of noise detection in ECG using a novel HRV-based approach through cross-dataset experiments on four datasets. Our results show that machine learning achieves an average accuracy of over 90\% and an AUPRC of more than 0.9. These findings suggest that regardless of the ECG data source or the type of noise, the proposed method maintains high accuracy even on unseen datasets, demonstrating the feasibility of generalizability.
Related papers
- Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
We employ and compare three state-of-the-art generative models to generate PCG data.
Our results demonstrate that the generated PCG data closely resembles the original datasets.
In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs.
arXiv Detail & Related papers (2024-12-17T18:07:40Z) - AnyECG: Foundational Models for Electrocardiogram Analysis [36.53693619144332]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.
This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
Experimental results in anomaly detection, arrhythmia detection, corrupted lead generation, and ultra-long ECG signal analysis demonstrate that AnyECG learns common ECG knowledge from data and significantly outperforms cutting-edge methods in each respective task.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning [45.3610312584439]
Diffusion magnetic resonance imaging (dMRI) is a crucial technique in neuroimaging studies, allowing for the non-invasive probing of the underlying structures of brain tissues.
Clinical dMRI data is susceptible to various artifacts during acquisition, which can lead to unreliable subsequent analyses.
We propose a novel unsupervised deep learning framework called $textbfU$n $textbfd$MRI $textbfA$rtifact $textbfD$etection via $textbfA$ngular Resolution Enhancement and $textbfC$ycle
arXiv Detail & Related papers (2024-09-24T08:56:10Z) - In-ear ECG Signal Enhancement with Denoising Convolutional Autoencoders [11.901601030527862]
In-ear ECG recordings often suffer from significant noise due to their small amplitude and the presence of other physiological signals.
This study develops a denoising convolutional autoencoder to enhance ECG information from in-ear recordings, producing cleaner ECG outputs.
arXiv Detail & Related papers (2024-08-27T16:50:57Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Automatic Detection of Noisy Electrocardiogram Signals without Explicit
Noise Labels [12.176026483486252]
We present a two-stage deep learning-based framework to automatically detect noisy ECG samples.
We observe that the framework can detect slightly and highly noisy ECG samples effectively.
We also study the transfer of the model learned on one dataset to another dataset and observe that the framework effectively detects noisy ECG samples.
arXiv Detail & Related papers (2022-08-08T17:16:16Z) - Blind ECG Restoration by Operational Cycle-GANs [15.264145425539128]
Continuous long-term monitoring of electrocardiography signals is crucial for the early detection of cardiac abnormalities such as arrhythmia.
Non-clinical ECG recordings often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, and other interferences.
We propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs)
arXiv Detail & Related papers (2022-01-29T19:47:17Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - RPnet: A Deep Learning approach for robust R Peak detection in noisy ECG [0.0]
A novel application of the Unet combined with Inception and Residual blocks is proposed to perform the extraction of R-peaks from an ECG.
The proposed network was trained on a database containing ECG episodes that have CVD and was tested against three traditional ECG detectors.
arXiv Detail & Related papers (2020-04-17T08:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.