Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning
- URL: http://arxiv.org/abs/2409.15883v1
- Date: Tue, 24 Sep 2024 08:56:10 GMT
- Title: Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning
- Authors: Sheng Chen, Zihao Tang, Xinyi Wang, Chenyu Wang, Weidong Cai,
- Abstract summary: Diffusion magnetic resonance imaging (dMRI) is a crucial technique in neuroimaging studies, allowing for the non-invasive probing of the underlying structures of brain tissues.
Clinical dMRI data is susceptible to various artifacts during acquisition, which can lead to unreliable subsequent analyses.
We propose a novel unsupervised deep learning framework called $textbfU$n $textbfd$MRI $textbfA$rtifact $textbfD$etection via $textbfA$ngular Resolution Enhancement and $textbfC$ycle
- Score: 45.3610312584439
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion magnetic resonance imaging (dMRI) is a crucial technique in neuroimaging studies, allowing for the non-invasive probing of the underlying structures of brain tissues. Clinical dMRI data is susceptible to various artifacts during acquisition, which can lead to unreliable subsequent analyses. Therefore, dMRI preprocessing is essential for improving image quality, and manual inspection is often required to ensure that the preprocessed data is sufficiently corrected. However, manual inspection requires expertise and is time-consuming, especially with large-scale dMRI datasets. Given these challenges, an automated dMRI artifact detection tool is necessary to increase the productivity and reliability of dMRI data analysis. To this end, we propose a novel unsupervised deep learning framework called $\textbf{U}$nsupervised $\textbf{d}$MRI $\textbf{A}$rtifact $\textbf{D}$etection via $\textbf{A}$ngular Resolution Enhancement and $\textbf{C}$ycle Consistency Learning (UdAD-AC). UdAD-AC leverages dMRI angular resolution enhancement and cycle consistency learning to capture the effective representation of artifact-free dMRI data during training, and it identifies data containing artifacts using designed confidence score during inference. To assess the capability of UdAD-AC, several commonly reported dMRI artifacts, including bias field, susceptibility distortion, and corrupted volume, were added to the testing data. Experimental results demonstrate that UdAD-AC achieves the best performance compared to competitive methods in unsupervised dMRI artifact detection.
Related papers
- HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI [5.393543723150301]
This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data.
HaITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction.
HaITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling.
arXiv Detail & Related papers (2024-06-28T16:40:57Z) - Diffusion MRI with Machine Learning [1.9798034349981164]
Diffusion-weighted magnetic resonance imaging (dMRI) offers unique capabilities.
Machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis.
arXiv Detail & Related papers (2024-01-01T13:03:35Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI [7.9283612449524155]
A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF)
measurement variabilities (e.g., inter- and intra-site variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI.
Most existing model-based methods (e.g., constrained spherical deconvolution (CSD)) and learning based methods (e.g., deep learning (DL)) do not explicitly consider such variabilities in fODF modeling.
We propose a novel data-driven deep constrained spherical deconvolution method to
arXiv Detail & Related papers (2023-06-05T14:06:40Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.