Small Graph Is All You Need: DeepStateGNN for Scalable Traffic Forecasting
- URL: http://arxiv.org/abs/2502.14525v1
- Date: Thu, 20 Feb 2025 13:00:31 GMT
- Title: Small Graph Is All You Need: DeepStateGNN for Scalable Traffic Forecasting
- Authors: Yannick Wölker, Arash Hajisafi, Cyrus Shahabi, Matthias Renz,
- Abstract summary: We propose a novel Graph Neural Network (GNN) model, named DeepStateGNN, for analyzing traffic data.
Unlike typical GNN methods that treat each traffic sensor as an individual graph node, DeepStateGNN clusters sensors into higher-level graph nodes.
Our experimental results show that DeepStateGNN offers superior scalability and faster training, while also delivering more accurate results than competitors.
- Score: 6.714751340563299
- License:
- Abstract: We propose a novel Graph Neural Network (GNN) model, named DeepStateGNN, for analyzing traffic data, demonstrating its efficacy in two critical tasks: forecasting and reconstruction. Unlike typical GNN methods that treat each traffic sensor as an individual graph node, DeepStateGNN clusters sensors into higher-level graph nodes, dubbed Deep State Nodes, based on various similarity criteria, resulting in a fixed number of nodes in a Deep State graph. The term "Deep State" nodes is a play on words, referencing hidden networks of power that, like these nodes, secretly govern traffic independently of visible sensors. These Deep State Nodes are defined by several similarity factors, including spatial proximity (e.g., sensors located nearby in the road network), functional similarity (e.g., sensors on similar types of freeways), and behavioral similarity under specific conditions (e.g., traffic behavior during rain). This clustering approach allows for dynamic and adaptive node grouping, as sensors can belong to multiple clusters and clusters may evolve over time. Our experimental results show that DeepStateGNN offers superior scalability and faster training, while also delivering more accurate results than competitors. It effectively handles large-scale sensor networks, outperforming other methods in both traffic forecasting and reconstruction accuracy.
Related papers
- Edge Conditional Node Update Graph Neural Network for Multi-variate Time
Series Anomaly Detection [35.299242563565315]
We introduce the Edge Conditional Node-update Graph Neural Network (ECNU-GNN)
Our model, equipped with an edge conditional node update module, dynamically transforms source node representations based on connected edges to represent target nodes aptly.
We validate performance on three real-world datasets: SWaT, WADI, and PSM.
arXiv Detail & Related papers (2024-01-25T00:47:44Z) - The Snowflake Hypothesis: Training Deep GNN with One Node One Receptive
field [39.679151680622375]
We introduce the Snowflake Hypothesis -- a novel paradigm underpinning the concept of one node, one receptive field''
We employ the simplest gradient and node-level cosine distance as guiding principles to regulate the aggregation depth for each node.
The observational results demonstrate that our hypothesis can serve as a universal operator for a range of tasks.
arXiv Detail & Related papers (2023-08-19T15:21:12Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
Graph Neural Networks (GNNs) compute node representations by taking into account the topology of the node's ego-network and the features of the ego-network's nodes.
When the nodes do not have high-quality features, GNNs learn an embedding layer to compute node embeddings and use them as input features.
To reduce the memory associated with this embedding layer, hashing-based approaches, commonly used in applications like NLP and recommender systems, can potentially be used.
We present approaches that take advantage of the nodes' position in the graph to dramatically reduce the memory required.
arXiv Detail & Related papers (2021-08-31T22:42:25Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - GraphReach: Position-Aware Graph Neural Network using Reachability
Estimations [12.640837452980332]
GraphReach is a position-aware inductive GNN that captures the global positions of nodes through reachability estimations.
We show that this anchor selection problem is NP-hard and, consequently, develop a greedy (1-1/e) approximation.
Empirical evaluation against state-of-the-art GNN architectures reveal that GraphReach provides up to 40% relative improvement in accuracy.
arXiv Detail & Related papers (2020-08-19T14:30:03Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.