Generalization Error of $f$-Divergence Stabilized Algorithms via Duality
- URL: http://arxiv.org/abs/2502.14544v1
- Date: Thu, 20 Feb 2025 13:21:01 GMT
- Title: Generalization Error of $f$-Divergence Stabilized Algorithms via Duality
- Authors: Francisco Daunas, IƱaki Esnaola, Samir M. Perlaza, Gholamali Aminian,
- Abstract summary: The solution to empirical risk minimization with $f$-divergence regularization (ERM-$f$DR) is extended to constrained optimization problems.
A dual formulation of ERM-$f$DR is introduced, providing a computationally efficient method to derive the normalization function of the ERM-$f$DR solution.
- Score: 2.6024036282674587
- License:
- Abstract: The solution to empirical risk minimization with $f$-divergence regularization (ERM-$f$DR) is extended to constrained optimization problems, establishing conditions for equivalence between the solution and constraints. A dual formulation of ERM-$f$DR is introduced, providing a computationally efficient method to derive the normalization function of the ERM-$f$DR solution. This dual approach leverages the Legendre-Fenchel transform and the implicit function theorem, enabling explicit characterizations of the generalization error for general algorithms under mild conditions, and another for ERM-$f$DR solutions.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Equivalence of the Empirical Risk Minimization to Regularization on the Family of f-Divergences [45.935798913942904]
The solution to empirical risk minimization with $f$-divergence regularization (ERM-$f$DR) is presented.
Examples of the solution for particular choices of the function $f$ are presented.
arXiv Detail & Related papers (2024-02-01T11:12:00Z) - Hedging Complexity in Generalization via a Parametric Distributionally
Robust Optimization Framework [18.6306170209029]
Empirical risk minimization (ERM) and distributionally robust optimization (DRO) are popular approaches for solving optimization problems.
We propose a simple approach in which the distribution of random perturbations is approximated using a parametric family of distributions.
We show that this new source of error can be controlled by suitable DRO formulations.
arXiv Detail & Related papers (2022-12-03T03:26:34Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - A Dual Approach to Constrained Markov Decision Processes with Entropy
Regularization [7.483040617090451]
We study entropy-regularized constrained Markov decision processes (CMDPs) under the soft-max parameterization.
Our theoretical analysis shows that its Lagrangian dual function is smooth and the Lagrangian duality gap can be decomposed into the primality gap and the constraint violation.
arXiv Detail & Related papers (2021-10-17T21:26:40Z) - Efficient Consensus Model based on Proximal Gradient Method applied to
Convolutional Sparse Problems [2.335152769484957]
We derive and detail a theoretical analysis of an efficient consensus algorithm based on gradient proximal (PG) approach.
The proposed algorithm is also applied to another particular convolutional problem for the anomaly detection task.
arXiv Detail & Related papers (2020-11-19T20:52:48Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.