論文の概要: ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification
- arxiv url: http://arxiv.org/abs/2502.14565v1
- Date: Thu, 20 Feb 2025 13:50:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:27.432763
- Title: ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification
- Title(参考訳): ReVISE: 本質的な自己検証によるテスト時間でのリファインディングの学習
- Authors: Hyunseok Lee, Seunghyuk Oh, Jaehyung Kim, Jinwoo Shin, Jihoon Tack,
- Abstract要約: Refine via Intrinsic Self-Verification (ReVISE)は、LLMが自己検証を通じてアウトプットを自己修正できる効率的なフレームワークである。
様々な推論タスクに関する実験により、ReVISEは効率的な自己補正を実現し、推論性能を大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 53.80183105328448
- License:
- Abstract: Self-awareness, i.e., the ability to assess and correct one's own generation, is a fundamental aspect of human intelligence, making its replication in large language models (LLMs) an important yet challenging task. Previous works tackle this by employing extensive reinforcement learning or rather relying on large external verifiers. In this work, we propose Refine via Intrinsic Self-Verification (ReVISE), an efficient and effective framework that enables LLMs to self-correct their outputs through self-verification. The core idea of ReVISE is to enable LLMs to verify their reasoning processes and continually rethink reasoning trajectories based on its verification. We introduce a structured curriculum based upon online preference learning to implement this efficiently. Specifically, as ReVISE involves two challenging tasks (i.e., self-verification and reasoning correction), we tackle each task sequentially using curriculum learning, collecting both failed and successful reasoning paths to construct preference pairs for efficient training. During inference, our approach enjoys natural test-time scaling by integrating self-verification and correction capabilities, further enhanced by our proposed confidence-aware decoding mechanism. Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
- Abstract(参考訳): 自己認識(Self-Awareness)、すなわち、自分自身の世代を評価し、修正する能力は、人間の知性の基本的側面であり、大きな言語モデル(LLM)における複製は重要で困難な課題である。
それまでの作業では、大規模な強化学習を採用するか、むしろ大規模な外部検証に頼っていた。
本研究では,LLMの自己検証によるアウトプットの自己補正を可能にする,効率的かつ効率的なフレームワークであるRefine via Intrinsic Self-Verification (ReVISE)を提案する。
ReVISEの中核となる考え方は、LSMが彼らの推論過程を検証できるようにし、その検証に基づいて推論軌道を再考することである。
オンラインの嗜好学習に基づく構造化カリキュラムを導入し、これを効率的に実装する。
具体的には、ReVISEが2つの困難なタスク(すなわち自己検証と推論の修正)を伴い、カリキュラム学習を用いて各タスクに順次取り組み、失敗と成功の両方の推論経路を収集し、効率的な学習のための選好ペアを構築する。
提案手法は,自己検証と修正機能を統合することで,自然なテスト時間スケーリングを享受し,信頼性を考慮した復号化機構によってさらに強化される。
様々な推論タスクに関する実験により、ReVISEは効率的な自己補正を実現し、推論性能を大幅に向上することを示した。
関連論文リスト
- LEAF: Learning and Evaluation Augmented by Fact-Checking to Improve Factualness in Large Language Models [11.453585039783901]
LEAF: Fact-Checkingによって強化された学習と評価は、大規模言語モデル(LLM)の現実的信頼性を高めるために設計された新しいアプローチである。
最初の戦略であるFact-Check-Then-RAGは、ファクトチェック結果を取り入れて、モデルパラメータを更新せずに検索プロセスをガイドすることによって、検索精度を向上させる。
第2の戦略であるLearning from Fact-Checks via Self-Trainingは、ファクトチェックされた応答の監督された微調整(SFT)や、ファクトチェックをランキングメカニズムとして適用するSimple Preference Optimization(SimPO)である。
論文 参考訳(メタデータ) (2024-10-31T00:18:05Z) - Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks [43.96835245022083]
モデルにアウトプットを洗練させる自己補正は、この問題に対する有望な解決策である。
本研究では,視覚言語モデルの推論および微調整段階における自己補正能力について検討した。
論文 参考訳(メタデータ) (2024-10-05T06:28:54Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
大規模言語モデル(LLM)は、自己補正(self-correction)と呼ばれる機能によって、その応答を改善することができる。
内在的な自己補正は、様々な応用で明らかであるが、それが有効である理由や理由は不明である。
内在的な自己補正は徐々に改善され、収束状態に近づくことができることを示す。
論文 参考訳(メタデータ) (2024-06-04T14:55:43Z) - Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models [23.42725642076256]
大規模言語モデル(LLM)は、自己訂正能力への関心が高まっている。
本稿では,LLMの内在的自己補正に関する包括的研究について述べる。
We developed a "If-or-Else" prompting framework, designed to guide LLMs in evaluation of their "confidence"。
論文 参考訳(メタデータ) (2024-02-19T21:38:02Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
大規模言語モデル(LLM)は、たとえ関連する知識を持っていたとしても、事実的不正確さに悩まされることが多い。
我々は,LLMの自己評価能力を活用し,現実性に向けてモデルを操る訓練信号を提供する。
提案手法は,Llamaファミリーモデルに対して,3つの重要な知識集約タスクにおいて,現実的精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:52:42Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
LLM(Large Language Models)は、非並列テキスト生成機能を備えた画期的な技術として登場した。
生成したコンテンツの正確性と適切性に関する懸念が続いている。
現代の方法論である自己補正がこれらの問題に対する対策として提案されている。
論文 参考訳(メタデータ) (2023-10-03T04:56:12Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Intrinsically Motivated Self-supervised Learning in Reinforcement
Learning [15.809835721792687]
視覚に基づく強化学習(RL)タスクでは、補助タスクに自己監督的損失を割り当てることが一般的である。
強化学習(IM-SSR)における本質的動機づけ型自己監督学習(Intivically Motivated Self-Supervised Learning)という,自己監督的損失を本質的な報酬として活用する,シンプルかつ効果的なアイデアを提案する。
自己監督的損失は、新しい状態の探索やニュアンス除去による改善として堅牢性を示す。
論文 参考訳(メタデータ) (2021-06-26T08:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。