Monocular Depth Estimation and Segmentation for Transparent Object with Iterative Semantic and Geometric Fusion
- URL: http://arxiv.org/abs/2502.14616v1
- Date: Thu, 20 Feb 2025 14:57:01 GMT
- Title: Monocular Depth Estimation and Segmentation for Transparent Object with Iterative Semantic and Geometric Fusion
- Authors: Jiangyuan Liu, Hongxuan Ma, Yuxin Guo, Yuhao Zhao, Chi Zhang, Wei Sui, Wei Zou,
- Abstract summary: We propose a monocular framework, which is the first to excel in both segmentation and depth estimation of transparent objects.
Specifically, we devise a novel semantic and geometric fusion module, effectively integrating the multi-scale information between tasks.
Experiments on two challenging synthetic and real-world datasets demonstrate that our model surpasses state-of-the-art monocular, stereo, and multi-view methods by a large margin.
- Score: 9.391182087420926
- License:
- Abstract: Transparent object perception is indispensable for numerous robotic tasks. However, accurately segmenting and estimating the depth of transparent objects remain challenging due to complex optical properties. Existing methods primarily delve into only one task using extra inputs or specialized sensors, neglecting the valuable interactions among tasks and the subsequent refinement process, leading to suboptimal and blurry predictions. To address these issues, we propose a monocular framework, which is the first to excel in both segmentation and depth estimation of transparent objects, with only a single-image input. Specifically, we devise a novel semantic and geometric fusion module, effectively integrating the multi-scale information between tasks. In addition, drawing inspiration from human perception of objects, we further incorporate an iterative strategy, which progressively refines initial features for clearer results. Experiments on two challenging synthetic and real-world datasets demonstrate that our model surpasses state-of-the-art monocular, stereo, and multi-view methods by a large margin of about 38.8%-46.2% with only a single RGB input. Codes and models are publicly available at https://github.com/L-J-Yuan/MODEST.
Related papers
- SEMPose: A Single End-to-end Network for Multi-object Pose Estimation [13.131534219937533]
SEMPose is an end-to-end multi-object pose estimation network.
It can perform inference at 32 FPS without requiring inputs other than the RGB image.
It can accurately estimate the poses of multiple objects in real time, with inference time unaffected by the number of target objects.
arXiv Detail & Related papers (2024-11-21T10:37:54Z) - TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection [23.73648235283315]
Task-oriented object detection aims to find objects suitable for accomplishing specific tasks.
Recent solutions are mainly all-in-one models.
We propose TaskCLIP, a more natural two-stage design composed of general object detection and task-guided object selection.
arXiv Detail & Related papers (2024-03-12T22:33:02Z) - MVTrans: Multi-View Perception of Transparent Objects [29.851395075937255]
We forgo the unreliable depth map from RGB-D sensors and extend the stereo based method.
Our proposed method, MVTrans, is an end-to-end multi-view architecture with multiple perception capabilities.
We establish a novel procedural photo-realistic dataset generation pipeline and create a large-scale transparent object detection dataset.
arXiv Detail & Related papers (2023-02-22T22:45:28Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
In this paper, we discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments.
We describe MMISM (Multi-modality input Multi-task output Indoor Scene understanding Model) to tackle the above challenges.
MMISM considers RGB images as well as sparse Lidar points as inputs and 3D object detection, depth completion, human pose estimation, and semantic segmentation as output tasks.
We show that MMISM performs on par or even better than single-task models.
arXiv Detail & Related papers (2022-09-27T04:49:19Z) - MonoGraspNet: 6-DoF Grasping with a Single RGB Image [73.96707595661867]
6-DoF robotic grasping is a long-lasting but unsolved problem.
Recent methods utilize strong 3D networks to extract geometric grasping representations from depth sensors.
We propose the first RGB-only 6-DoF grasping pipeline called MonoGraspNet.
arXiv Detail & Related papers (2022-09-26T21:29:50Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
We introduce MetaGraspNet, a large-scale photo-realistic bin picking dataset constructed via physics-based metaverse synthesis.
The proposed dataset contains 217k RGBD images across 82 different article types, with full annotations for object detection, amodal perception, keypoint detection, manipulation order and ambidextrous grasp labels for a parallel-jaw and vacuum gripper.
We also provide a real dataset consisting of over 2.3k fully annotated high-quality RGBD images, divided into 5 levels of difficulties and an unseen object set to evaluate different object and layout properties.
arXiv Detail & Related papers (2022-08-08T08:15:34Z) - Exploring the Interactive Guidance for Unified and Effective Image
Matting [16.933897631478146]
We propose a Unified Interactive image Matting method, named UIM, which solves the limitations and achieves satisfying matting results.
Specifically, UIM leverages multiple types of user interaction to avoid the ambiguity of multiple matting targets.
We show that UIM achieves state-of-the-art performance on the Composition-1K test set and a synthetic unified dataset.
arXiv Detail & Related papers (2022-05-17T13:20:30Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
We propose a distributed approach to object-centric representations: the Complex AutoEncoder.
We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets.
We also show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
arXiv Detail & Related papers (2022-04-05T09:25:28Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - Combining Semantic Guidance and Deep Reinforcement Learning For
Generating Human Level Paintings [22.889059874754242]
Generation of stroke-based non-photorealistic imagery is an important problem in the computer vision community.
Previous methods have been limited to datasets with little variation in position, scale and saliency of the foreground object.
We propose a Semantic Guidance pipeline with 1) a bi-level painting procedure for learning the distinction between foreground and background brush strokes at training time.
arXiv Detail & Related papers (2020-11-25T09:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.