SEMPose: A Single End-to-end Network for Multi-object Pose Estimation
- URL: http://arxiv.org/abs/2411.14002v1
- Date: Thu, 21 Nov 2024 10:37:54 GMT
- Title: SEMPose: A Single End-to-end Network for Multi-object Pose Estimation
- Authors: Xin Liu, Hao Wang, Shibei Xue, Dezong Zhao,
- Abstract summary: SEMPose is an end-to-end multi-object pose estimation network.
It can perform inference at 32 FPS without requiring inputs other than the RGB image.
It can accurately estimate the poses of multiple objects in real time, with inference time unaffected by the number of target objects.
- Score: 13.131534219937533
- License:
- Abstract: In computer vision, estimating the six-degree-of-freedom pose from an RGB image is a fundamental task. However, this task becomes highly challenging in multi-object scenes. Currently, the best methods typically employ an indirect strategy, which identifies 2D and 3D correspondences, and then solves with the Perspective-n-Points method. Yet, this approach cannot be trained end-to-end. Direct methods, on the other hand, suffer from lower accuracy due to challenges such as varying object sizes and occlusions. To address these issues, we propose SEMPose, an end-to-end multi-object pose estimation network. SEMPose utilizes a well-designed texture-shape guided feature pyramid network, effectively tackling the challenge of object size variations. Additionally, it employs an iterative refinement head structure, progressively regressing rotation and translation separately to enhance estimation accuracy. During training, we alleviate the impact of occlusion by selecting positive samples from visible parts. Experimental results demonstrate that SEMPose can perform inference at 32 FPS without requiring inputs other than the RGB image. It can accurately estimate the poses of multiple objects in real time, with inference time unaffected by the number of target objects. On the LM-O and YCB-V datasets, our method outperforms other RGB-based single-model methods, achieving higher accuracy. Even when compared with multi-model methods and approaches that use additional refinement, our results remain competitive.
Related papers
- CVAM-Pose: Conditional Variational Autoencoder for Multi-Object Monocular Pose Estimation [3.5379836919221566]
Estimating rigid objects' poses is one of the fundamental problems in computer vision.
This paper presents a novel approach, CVAM-Pose, for multi-object monocular pose estimation.
arXiv Detail & Related papers (2024-10-11T17:26:27Z) - RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
We introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image.
Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence.
arXiv Detail & Related papers (2024-05-14T10:10:45Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
We introduce Diff-DOPE, a 6-DoF pose refiner that takes as input an image, a 3D textured model of an object, and an initial pose of the object.
The method uses differentiable rendering to update the object pose to minimize the visual error between the image and the projection of the model.
We show that this simple, yet effective, idea is able to achieve state-of-the-art results on pose estimation datasets.
arXiv Detail & Related papers (2023-09-30T18:52:57Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation [24.770767430749288]
We propose a 3 stage 6 DoF object detection method called DPODv2 (Dense Pose Object Detector)
We combine a 2D object detector with a dense correspondence estimation network and a multi-view pose refinement method to estimate a full 6 DoF pose.
DPODv2 achieves excellent results on all of them while still remaining fast and scalable independent of the used data modality and the type of training data.
arXiv Detail & Related papers (2022-07-06T16:48:56Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose
Estimation [76.31125154523056]
We present a discrete descriptor, which can represent the object surface densely.
We also propose a coarse to fine training strategy, which enables fine-grained correspondence prediction.
arXiv Detail & Related papers (2022-03-17T16:16:24Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.