How Far are LLMs from Being Our Digital Twins? A Benchmark for Persona-Based Behavior Chain Simulation
- URL: http://arxiv.org/abs/2502.14642v1
- Date: Thu, 20 Feb 2025 15:29:32 GMT
- Title: How Far are LLMs from Being Our Digital Twins? A Benchmark for Persona-Based Behavior Chain Simulation
- Authors: Rui Li, Heming Xia, Xinfeng Yuan, Qingxiu Dong, Lei Sha, Wenjie Li, Zhifang Sui,
- Abstract summary: We introduce BehaviorChain, the first benchmark for evaluating digital twins' ability to simulate continuous human behavior.<n> BehaviorChain comprises diverse, high-quality, persona-based behavior chains, totaling 15,846 distinct behaviors across 1,001 unique personas.<n> Comprehensive evaluation results demonstrated that even state-of-the-art models struggle with accurately simulating continuous human behavior.
- Score: 30.713599131902566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, LLMs have garnered increasing attention across academic disciplines for their potential as human digital twins, virtual proxies designed to replicate individuals and autonomously perform tasks such as decision-making, problem-solving, and reasoning on their behalf. However, current evaluations of LLMs primarily emphasize dialogue simulation while overlooking human behavior simulation, which is crucial for digital twins. To address this gap, we introduce BehaviorChain, the first benchmark for evaluating LLMs' ability to simulate continuous human behavior. BehaviorChain comprises diverse, high-quality, persona-based behavior chains, totaling 15,846 distinct behaviors across 1,001 unique personas, each with detailed history and profile metadata. For evaluation, we integrate persona metadata into LLMs and employ them to iteratively infer contextually appropriate behaviors within dynamic scenarios provided by BehaviorChain. Comprehensive evaluation results demonstrated that even state-of-the-art models struggle with accurately simulating continuous human behavior.
Related papers
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
We introduce SocioVerse, an agent-driven world model for social simulation.
Our framework features four powerful alignment components and a user pool of 10 million real individuals.
Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - Can LLMs Simulate Personas with Reversed Performance? A Benchmark for Counterfactual Instruction Following [12.668201122427101]
Large Language Models (LLMs) are increasingly widely used to simulate personas in virtual environments.
We show that even state-of-the-art LLMs cannot simulate personas with reversed performance.
arXiv Detail & Related papers (2025-04-08T22:00:32Z) - If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs [55.8331366739144]
We introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in large language models (LLMs)
Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches.
arXiv Detail & Related papers (2025-03-30T16:50:57Z) - LLM Agents That Act Like Us: Accurate Human Behavior Simulation with Real-World Data [26.506531028553795]
Recent research shows that LLMs can simulate believable'' human behaviors to power LLM agents via prompt-only methods.
We focus on evaluating and improving LLM's objective accuracy'' rather than the subjective believability'' in the web action generation task.
We present the first comprehensive quantitative evaluation of state-of-the-art LLMs on the task of web action generation.
arXiv Detail & Related papers (2025-03-26T17:33:27Z) - Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models [26.333097337393685]
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers.<n>Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings.<n>First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours.<n>Second, we present a scalable, automated approach by employing simulations of user interactions.<n>Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions.
arXiv Detail & Related papers (2025-02-10T22:09:57Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.
Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.
We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.<n>Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.<n>These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation [46.42384207122049]
We design SimulateBench to evaluate the believability of large language models (LLMs) when simulating human behaviors.
Based on SimulateBench, we evaluate the performances of 10 widely used LLMs when simulating characters.
arXiv Detail & Related papers (2023-12-28T16:51:11Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.