SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
- URL: http://arxiv.org/abs/2504.10157v2
- Date: Wed, 23 Apr 2025 06:08:32 GMT
- Title: SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
- Authors: Xinnong Zhang, Jiayu Lin, Xinyi Mou, Shiyue Yang, Xiawei Liu, Libo Sun, Hanjia Lyu, Yihang Yang, Weihong Qi, Yue Chen, Guanying Li, Ling Yan, Yao Hu, Siming Chen, Yu Wang, Xuanjing Huang, Jiebo Luo, Shiping Tang, Libo Wu, Baohua Zhou, Zhongyu Wei,
- Abstract summary: We introduce SocioVerse, an agent-driven world model for social simulation.<n>Our framework features four powerful alignment components and a user pool of 10 million real individuals.<n>Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
- Score: 70.02370111025617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
Related papers
- Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
The rise of echo chambers on social media platforms has heightened concerns about polarization and the reinforcement of existing beliefs.
Traditional approaches for simulating echo chamber formation have often relied on predefined rules and numerical simulations.
We present a novel framework that leverages large language models (LLMs) as generative agents to simulate echo chamber dynamics.
arXiv Detail & Related papers (2025-02-25T12:05:11Z) - AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society [32.849311155921264]
We propose AgentSociety, a large-scale social simulator that integrates a realistic societal environment.<n>Based on the proposed simulator, we generate social lives for over 10k agents, simulating their 5 million interactions.<n>We focus on four key social issues: polarization, the spread of inflammatory messages, the effects of universal basic income policies, and the impact of external shocks such as hurricanes.
arXiv Detail & Related papers (2025-02-12T15:27:07Z) - TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets [24.354300029071418]
Large language model (LLM) agents have gained traction as simulation tools for modeling human behavior.<n>We introduce TwinMarket, a novel multi-agent framework that leverages LLMs to simulate socio-economic systems.<n>Our approach provides valuable insights into the complex interplay between individual decision-making and collective socio-economic patterns.
arXiv Detail & Related papers (2025-02-03T16:39:48Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.
Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.
We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.00696959981173]
We propose a scalable social media simulator based on real-world social media platforms.
OASIS supports large-scale user simulations capable of modeling up to one million users.
We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms.
arXiv Detail & Related papers (2024-11-18T13:57:35Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation [43.46328146533669]
Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change.
We introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types.
We construct a Twitter-like environment to replicate their response dynamics following trigger events.
arXiv Detail & Related papers (2024-02-26T06:28:54Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.