Internal Incoherency Scores for Constraint-based Causal Discovery Algorithms
- URL: http://arxiv.org/abs/2502.14719v1
- Date: Thu, 20 Feb 2025 16:44:54 GMT
- Title: Internal Incoherency Scores for Constraint-based Causal Discovery Algorithms
- Authors: Sofia Faltenbacher, Jonas Wahl, Rebecca Herman, Jakob Runge,
- Abstract summary: We propose internal coherency scores that allow testing for assumption violations and finite sample errors.
We illustrate our coherency scores on the PC algorithm with simulated and real-world datasets.
- Score: 12.524536193679124
- License:
- Abstract: Causal discovery aims to infer causal graphs from observational or experimental data. Methods such as the popular PC algorithm are based on conditional independence testing and utilize enabling assumptions, such as the faithfulness assumption, for their inferences. In practice, these assumptions, as well as the functional assumptions inherited from the chosen conditional independence test, are typically taken as a given and not further tested for their validity on the data. In this work, we propose internal coherency scores that allow testing for assumption violations and finite sample errors, whenever detectable without requiring ground truth or further statistical tests. We provide a complete classification of erroneous results, including a distinction between detectable and undetectable errors, and prove that the detectable erroneous results can be measured by our scores. We illustrate our coherency scores on the PC algorithm with simulated and real-world datasets, and envision that testing for internal coherency can become a standard tool in applying constraint-based methods, much like a suite of tests is used to validate the assumptions of classical regression analysis.
Related papers
- Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
We develop a principled procedure for determining when a large language model should abstain from responding in a general domain.
We leverage conformal prediction techniques to develop an abstention procedure that benefits from rigorous theoretical guarantees on the hallucination rate (error rate)
Experimentally, our resulting conformal abstention method reliably bounds the hallucination rate on various closed-book, open-domain generative question answering datasets.
arXiv Detail & Related papers (2024-04-04T11:32:03Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - Assumption violations in causal discovery and the robustness of score matching [38.60630271550033]
This paper extensively benchmarks the empirical performance of recent causal discovery methods on observational i.i.d. data.
We show that score matching-based methods demonstrate surprising performance in the false positive and false negative rate of the inferred graph.
We hope this paper will set a new standard for the evaluation of causal discovery methods.
arXiv Detail & Related papers (2023-10-20T09:56:07Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
We propose a double machine learning approach to combine experimental and observational studies.
Our framework tests for violations of external validity and ignorability under milder assumptions.
arXiv Detail & Related papers (2023-07-04T02:53:11Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Null Hypothesis Test for Anomaly Detection [0.0]
We extend the use of Classification Without Labels for anomaly detection with a hypothesis test designed to exclude the background-only hypothesis.
By testing for statistical independence of the two discriminating dataset regions, we are able exclude the background-only hypothesis without relying on fixed anomaly score cuts or extrapolations of background estimates between regions.
arXiv Detail & Related papers (2022-10-05T13:03:55Z) - Model-Free Sequential Testing for Conditional Independence via Testing
by Betting [8.293345261434943]
The proposed test allows researchers to analyze an incoming i.i.d. data stream with any arbitrary dependency structure.
We allow the processing of data points online as soon as they arrive and stop data acquisition once significant results are detected.
arXiv Detail & Related papers (2022-10-01T20:05:33Z) - Private Sequential Hypothesis Testing for Statisticians: Privacy, Error
Rates, and Sample Size [24.149533870085175]
We study the sequential hypothesis testing problem under a slight variant of differential privacy, known as Renyi differential privacy.
We present a new private algorithm based on Wald's Sequential Probability Ratio Test (SPRT) that also gives strong theoretical privacy guarantees.
arXiv Detail & Related papers (2022-04-10T04:15:50Z) - Model-agnostic out-of-distribution detection using combined statistical
tests [15.27980070479021]
We present simple methods for out-of-distribution detection using a trained generative model.
We combine a classical parametric test (Rao's score test) with the recently introduced typicality test.
Despite their simplicity and generality, these methods can be competitive with model-specific out-of-distribution detection algorithms.
arXiv Detail & Related papers (2022-03-02T13:32:09Z) - Cross-validation Confidence Intervals for Test Error [83.67415139421448]
This work develops central limit theorems for crossvalidation and consistent estimators of its variance under weak stability conditions on the learning algorithm.
Results are the first of their kind for the popular choice of leave-one-out cross-validation.
arXiv Detail & Related papers (2020-07-24T17:40:06Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.