Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
- URL: http://arxiv.org/abs/2502.14772v1
- Date: Thu, 20 Feb 2025 17:53:13 GMT
- Title: Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination
- Authors: Ilias Diakonikolas, Giannis Iakovidis, Daniel M. Kane, Thanasis Pittas,
- Abstract summary: We give the first computationally efficient algorithm for high-dimensional robust mean estimation with mean-shift contamination.
Our algorithm has near-optimal sample complexity, runs in sample-polynomial time, and approximates the target mean to any desired accuracy.
- Score: 35.67742880001828
- License:
- Abstract: We study the algorithmic problem of robust mean estimation of an identity covariance Gaussian in the presence of mean-shift contamination. In this contamination model, we are given a set of points in $\mathbb{R}^d$ generated i.i.d. via the following process. For a parameter $\alpha<1/2$, the $i$-th sample $x_i$ is obtained as follows: with probability $1-\alpha$, $x_i$ is drawn from $\mathcal{N}(\mu, I)$, where $\mu \in \mathbb{R}^d$ is the target mean; and with probability $\alpha$, $x_i$ is drawn from $\mathcal{N}(z_i, I)$, where $z_i$ is unknown and potentially arbitrary. Prior work characterized the information-theoretic limits of this task. Specifically, it was shown that, in contrast to Huber contamination, in the presence of mean-shift contamination consistent estimation is possible. On the other hand, all known robust estimators in the mean-shift model have running times exponential in the dimension. Here we give the first computationally efficient algorithm for high-dimensional robust mean estimation with mean-shift contamination that can tolerate a constant fraction of outliers. In particular, our algorithm has near-optimal sample complexity, runs in sample-polynomial time, and approximates the target mean to any desired accuracy. Conceptually, our result contributes to a growing body of work that studies inference with respect to natural noise models lying in between fully adversarial and random settings.
Related papers
- Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond [28.931489333515618]
Given an unnormalized probability density $piproptomathrme-V$, estimating its normalizing constant $Z=int_mathbbRdmathrme-V(x)mathrmdx$ or free energy $F=-log Z$ is a crucial problem in Bayesian statistics, statistical mechanics, and machine learning.
We propose a new normalizing constant estimation algorithm based on reverse diffusion samplers and establish a framework for analyzing its complexity.
arXiv Detail & Related papers (2025-02-07T00:05:28Z) - Entangled Mean Estimation in High-Dimensions [36.97113089188035]
We study the task of high-dimensional entangled mean estimation in the subset-of-signals model.
We show that the optimal error (up to polylogarithmic factors) is $f(alpha,N) + sqrtD/(alpha N)$, where the term $f(alpha,N)$ is the error of the one-dimensional problem and the second term is the sub-Gaussian error rate.
arXiv Detail & Related papers (2025-01-09T18:31:35Z) - Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
We study sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression.
For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees.
At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
arXiv Detail & Related papers (2024-03-15T15:51:27Z) - Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances [15.990720051907864]
Subset-of-Signals model serves as a benchmark for heteroskedastic mean estimation.
Our algorithm resolves this open question up to logarithmic factors.
Even for $d=2$, our techniques enable rates comparable to knowing the variance of each sample.
arXiv Detail & Related papers (2023-12-05T01:13:10Z) - Data Structures for Density Estimation [66.36971978162461]
Given a sublinear (in $n$) number of samples from $p$, our main result is the first data structure that identifies $v_i$ in time sublinear in $k$.
We also give an improved version of the algorithm of Acharya et al. that reports $v_i$ in time linear in $k$.
arXiv Detail & Related papers (2023-06-20T06:13:56Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
We study the problem of estimating the value of a known smooth function $f$ at an unknown point $boldsymbolmu in mathbbRn$, where each component $mu_i$ can be sampled via a noisy oracle.
We design an instance-adaptive algorithm that learns to sample according to the importance of each coordinate, and with probability at least $1-delta$ returns an $epsilon$ accurate estimate of $f(boldsymbolmu)$.
arXiv Detail & Related papers (2022-03-18T18:50:52Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
We are given i.i.d. samples from a distribution of the form $Z = (1-epsilon) X + epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $mathcalN(0, Sigma)$.
In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples.
We prove a sample complexity lower bound of $Omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma
arXiv Detail & Related papers (2020-12-31T18:24:41Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.