Sparse Activations as Conformal Predictors
- URL: http://arxiv.org/abs/2502.14773v1
- Date: Thu, 20 Feb 2025 17:53:41 GMT
- Title: Sparse Activations as Conformal Predictors
- Authors: Margarida M. Campos, João Calém, Sophia Sklaviadis, Mário A. T. Figueiredo, André F. T. Martins,
- Abstract summary: We find a novel connection between conformal prediction and sparse softmax-like transformations.
We introduce new non-conformity scores for classification that make the calibration process correspond to the widely used temperature scaling method.
We show that the proposed method achieves competitive results in terms of coverage, efficiency, and adaptiveness.
- Score: 19.298282860984116
- License:
- Abstract: Conformal prediction is a distribution-free framework for uncertainty quantification that replaces point predictions with sets, offering marginal coverage guarantees (i.e., ensuring that the prediction sets contain the true label with a specified probability, in expectation). In this paper, we uncover a novel connection between conformal prediction and sparse softmax-like transformations, such as sparsemax and $\gamma$-entmax (with $\gamma > 1$), which may assign nonzero probability only to a subset of labels. We introduce new non-conformity scores for classification that make the calibration process correspond to the widely used temperature scaling method. At test time, applying these sparse transformations with the calibrated temperature leads to a support set (i.e., the set of labels with nonzero probability) that automatically inherits the coverage guarantees of conformal prediction. Through experiments on computer vision and text classification benchmarks, we demonstrate that the proposed method achieves competitive results in terms of coverage, efficiency, and adaptiveness compared to standard non-conformity scores based on softmax.
Related papers
- Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.
We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Stochastic Online Conformal Prediction with Semi-Bandit Feedback [29.334511328067777]
We consider the online learning setting, where examples arrive over time, and the goal is to construct prediction sets dynamically.
We propose a novel conformal prediction algorithm targeted at this setting, and prove that it obtains sublinear regret compared to the optimal conformal predictor.
arXiv Detail & Related papers (2024-05-22T00:42:49Z) - PAC Prediction Sets Under Label Shift [52.30074177997787]
Prediction sets capture uncertainty by predicting sets of labels rather than individual labels.
We propose a novel algorithm for constructing prediction sets with PAC guarantees in the label shift setting.
We evaluate our approach on five datasets.
arXiv Detail & Related papers (2023-10-19T17:57:57Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
Conformal prediction is a statistical framework that generates prediction sets with a desired coverage guarantee.
We propose a novel algorithm named $textitSorted Adaptive Prediction Sets$ (SAPS)
SAPS discards all the probability values except for the maximum softmax probability.
arXiv Detail & Related papers (2023-10-10T08:54:14Z) - Class-Conditional Conformal Prediction with Many Classes [60.8189977620604]
We propose a method called clustered conformal prediction that clusters together classes having "similar" conformal scores.
We find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.
arXiv Detail & Related papers (2023-06-15T17:59:02Z) - Test-time Recalibration of Conformal Predictors Under Distribution Shift
Based on Unlabeled Examples [30.61588337557343]
Conformal predictors provide uncertainty estimates by computing a set of classes with a user-specified probability.
We propose a method that provides excellent uncertainty estimates under natural distribution shifts.
arXiv Detail & Related papers (2022-10-09T04:46:00Z) - Approximate Conditional Coverage via Neural Model Approximations [0.030458514384586396]
We analyze a data-driven procedure for obtaining empirically reliable approximate conditional coverage.
We demonstrate the potential for substantial (and otherwise unknowable) under-coverage with split-conformal alternatives with marginal coverage guarantees.
arXiv Detail & Related papers (2022-05-28T02:59:05Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Uncertainty Sets for Image Classifiers using Conformal Prediction [112.54626392838163]
We present an algorithm that modifies any classifier to output a predictive set containing the true label with a user-specified probability, such as 90%.
The algorithm is simple and fast like Platt scaling, but provides a formal finite-sample coverage guarantee for every model and dataset.
Our method modifies an existing conformal prediction algorithm to give more stable predictive sets by regularizing the small scores of unlikely classes after Platt scaling.
arXiv Detail & Related papers (2020-09-29T17:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.