AVD2: Accident Video Diffusion for Accident Video Description
- URL: http://arxiv.org/abs/2502.14801v1
- Date: Thu, 20 Feb 2025 18:22:44 GMT
- Title: AVD2: Accident Video Diffusion for Accident Video Description
- Authors: Cheng Li, Keyuan Zhou, Tong Liu, Yu Wang, Mingqiao Zhuang, Huan-ang Gao, Bu Jin, Hao Zhao,
- Abstract summary: We introduce AVD2 (Accident Video Diffusion for Accident Video Description), a novel framework that enhances accident scene understanding.
The framework generates accident videos that align with detailed natural language descriptions and reasoning.
The integration of the EMM-AU dataset establishes state-of-the-art performance across both automated metrics and human evaluations.
- Score: 11.221276595088215
- License:
- Abstract: Traffic accidents present complex challenges for autonomous driving, often featuring unpredictable scenarios that hinder accurate system interpretation and responses.Nonetheless, prevailing methodologies fall short in elucidating the causes of accidents and proposing preventive measures due to the paucity of training data specific to accident scenarios.In this work, we introduce AVD2 (Accident Video Diffusion for Accident Video Description), a novel framework that enhances accident scene understanding by generating accident videos that aligned with detailed natural language descriptions and reasoning, resulting in the contributed EMM-AU (Enhanced Multi-Modal Accident Video Understanding) dataset. Empirical results reveal that the integration of the EMM-AU dataset establishes state-of-the-art performance across both automated metrics and human evaluations, markedly advancing the domains of accident analysis and prevention. Project resources are available at https://an-answer-tree.github.io
Related papers
- SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing [35.33278666285077]
Accident reports provide valuable resources for autonomous driving system (ADS) testing.
Existing scenario reconstruction methods from accident reports often exhibit limited accuracy in information extraction.
In this paper, we design and implement Sovar, a tool for automatically generating road-generalizable scenarios from accident reports.
arXiv Detail & Related papers (2024-09-12T14:35:55Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - AccidentBlip: Agent of Accident Warning based on MA-former [24.81148840857782]
AccidentBlip is a vision-only framework that employs our self-designed Motion Accident Transformer (MA-former) to process each frame of video.
AccidentBlip achieves performance in both accident detection and prediction tasks on the DeepAccident dataset.
It also outperforms current SOTA methods in V2V and V2X scenarios, demonstrating a superior capability to understand complex real-world environments.
arXiv Detail & Related papers (2024-04-18T12:54:25Z) - Abductive Ego-View Accident Video Understanding for Safe Driving
Perception [75.60000661664556]
We present MM-AU, a novel dataset for Multi-Modal Accident video Understanding.
MM-AU contains 11,727 in-the-wild ego-view accident videos, each with temporally aligned text descriptions.
We present an Abductive accident Video understanding framework for Safe Driving perception (AdVersa-SD)
arXiv Detail & Related papers (2024-03-01T10:42:52Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Augmenting Ego-Vehicle for Traffic Near-Miss and Accident Classification
Dataset using Manipulating Conditional Style Translation [0.3441021278275805]
There is no difference between accident and near-miss at the time before the accident happened.
Our contribution is to redefine the accident definition and re-annotate the accident inconsistency on DADA-2000 dataset together with near-miss.
The proposed method integrates two different components: conditional style translation (CST) and separable 3-dimensional convolutional neural network (S3D)
arXiv Detail & Related papers (2023-01-06T22:04:47Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.