論文の概要: A Survey of Model Architectures in Information Retrieval
- arxiv url: http://arxiv.org/abs/2502.14822v1
- Date: Thu, 20 Feb 2025 18:42:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:26:25.911446
- Title: A Survey of Model Architectures in Information Retrieval
- Title(参考訳): 情報検索におけるモデルアーキテクチャの検討
- Authors: Zhichao Xu, Fengran Mo, Zhiqi Huang, Crystina Zhang, Puxuan Yu, Bei Wang, Jimmy Lin, Vivek Srikumar,
- Abstract要約: 機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
- 参考スコア(独自算出の注目度): 64.75808744228067
- License:
- Abstract: This survey examines the evolution of model architectures in information retrieval (IR), focusing on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation. The review intentionally separates architectural considerations from training methodologies to provide a focused analysis of structural innovations in IR systems.We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs). We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
- Abstract(参考訳): 本稿では,情報検索(IR)におけるモデルアーキテクチャの進化を考察し,特徴抽出のためのバックボーンモデルと妥当性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に着目した。
このレビューでは、IRシステムにおける構造的革新を集中的に分析するために、アーキテクチャ上の考慮事項を意図的に分離し、従来の用語ベースの手法から現代のニューラルアプローチへと発展させ、特にトランスフォーマーベースのモデルとその後の大規模言語モデル(LLM)の影響を強調している。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Redefining Data-Centric Design: A New Approach with a Domain Model and Core Data Ontology for Computational Systems [2.872069347343959]
本稿では,新しい情報ドメインモデルを導入することにより,計算システムを設計するための革新的なデータ中心パラダイムを提案する。
提案モデルは従来のノード中心のフレームワークから離れ、オブジェクト、イベント、コンセプト、アクションを組み込んだマルチモーダルアプローチを使用して、データ中心の分類に焦点を当てている。
論文 参考訳(メタデータ) (2024-09-01T22:34:12Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
ファンデーションモデルは、前例のない精度と効率で幅広いタスクを実行することができる大規模で事前訓練されたAIモデルである。
本調査は, 遠隔センシングにおける基礎モデルの開発と応用を継続するために, 進展のパノラマと将来性のある経路を提供することによって, 研究者や実践者の資源として機能することを目的としている。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - iNNspector: Visual, Interactive Deep Model Debugging [8.997568393450768]
本研究では,ディープラーニング実験のデータ空間を構造化する概念的枠組みを提案する。
我々のフレームワークは設計の次元を捉え、このデータを探索可能かつ抽出可能にするためのメカニズムを提案する。
我々は、ディープラーニング実験の追跡を可能にし、データのインタラクティブな可視化を提供するiNNspectorシステムを提案する。
論文 参考訳(メタデータ) (2024-07-25T12:48:41Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Machine learning for structural design models of continuous beam systems via influence zones [3.284878354988896]
この研究は、逆問題の観点から連続ビームシステムのための機械学習構造設計モデルを開発する。
本研究の目的は,任意のシステムサイズを持つ連続ビームシステムの断面積要求を予測できる非定常構造設計モデルを概念化することである。
論文 参考訳(メタデータ) (2024-03-14T14:53:18Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
本調査では,2015年以降に開発されたニューラルエンティティリンク(EL)システムの包括的記述について報告する。
その目標は、ニューラルエンティティリンクシステムの設計機能を体系化し、それらのパフォーマンスを一般的なベンチマーク上の注目すべき古典的手法と比較することである。
この調査はエンティティリンクの応用に焦点をあて、最近出現した、深い事前訓練されたマスキング言語モデルを強化するユースケースに焦点を当てている。
論文 参考訳(メタデータ) (2020-05-31T18:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。