Generating $π$-Functional Molecules Using STGG+ with Active Learning
- URL: http://arxiv.org/abs/2502.14842v1
- Date: Thu, 20 Feb 2025 18:52:42 GMT
- Title: Generating $π$-Functional Molecules Using STGG+ with Active Learning
- Authors: Alexia Jolicoeur-Martineau, Yan Zhang, Boris Knyazev, Aristide Baratin, Cheng-Hao Liu,
- Abstract summary: This work integrates a state-of-the-art supervised learning method, STGG+, in an active learning loop.
We apply STGG+AL to the design of organic $pi$-functional materials, specifically two challenging tasks.
The generated molecules are validated and rationalized in-silico with time-dependent density functional theory.
- Score: 31.421181317988093
- License:
- Abstract: Generating novel molecules with out-of-distribution properties is a major challenge in molecular discovery. While supervised learning methods generate high-quality molecules similar to those in a dataset, they struggle to generalize to out-of-distribution properties. Reinforcement learning can explore new chemical spaces but often conducts 'reward-hacking' and generates non-synthesizable molecules. In this work, we address this problem by integrating a state-of-the-art supervised learning method, STGG+, in an active learning loop. Our approach iteratively generates, evaluates, and fine-tunes STGG+ to continuously expand its knowledge. We denote this approach STGG+AL. We apply STGG+AL to the design of organic $\pi$-functional materials, specifically two challenging tasks: 1) generating highly absorptive molecules characterized by high oscillator strength and 2) designing absorptive molecules with reasonable oscillator strength in the near-infrared (NIR) range. The generated molecules are validated and rationalized in-silico with time-dependent density functional theory. Our results demonstrate that our method is highly effective in generating novel molecules with high oscillator strength, contrary to existing methods such as reinforcement learning (RL) methods. We open-source our active-learning code along with our Conjugated-xTB dataset containing 2.9 million $\pi$-conjugated molecules and the function for approximating the oscillator strength and absorption wavelength (based on sTDA-xTB).
Related papers
- Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Context-enriched molecule representations improve few-shot drug
discovery [8.379853456273674]
We introduce a new method for few-shot drug discovery.
Our main idea is to enrich a molecule representation by knowledge about known context or reference molecules.
Our approach is compared with other few-shot methods for drug discovery on the FS-Mol benchmark dataset.
arXiv Detail & Related papers (2023-04-24T17:58:05Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
Molecular representation learning plays a crucial role in AI-assisted drug discovery research.
We propose a Harmonic Molecular Representation learning framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface.
arXiv Detail & Related papers (2023-03-27T18:02:47Z) - LIMO: Latent Inceptionism for Targeted Molecule Generation [14.391216237573369]
We present Latent Inceptionism on Molecules (LIMO), which significantly accelerates molecule generation with an inceptionism-like technique.
Comprehensive experiments show that LIMO performs competitively on benchmark tasks.
One of our generated drug-like compounds has a predicted $K_D$ of $6 cdot 10-14$ M against the human estrogen receptor.
arXiv Detail & Related papers (2022-06-17T21:05:58Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z) - Reinforcement Learning for Molecular Design Guided by Quantum Mechanics [10.112779201155005]
We present a novel RL formulation for molecular design in coordinates, thereby extending the class of molecules that can be built.
Our reward function is directly based on fundamental physical properties such as the energy, which we approximate via fast quantum-chemical methods.
In our experiments, we show that our agent can efficiently learn to solve these tasks from scratch by working in a translation and rotation invariant state-action space.
arXiv Detail & Related papers (2020-02-18T16:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.