論文の概要: RAPTOR: Refined Approach for Product Table Object Recognition
- arxiv url: http://arxiv.org/abs/2502.14918v2
- Date: Mon, 24 Feb 2025 08:29:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 12:08:00.873993
- Title: RAPTOR: Refined Approach for Product Table Object Recognition
- Title(参考訳): RAPTOR:製品表オブジェクト認識のための改良されたアプローチ
- Authors: Eliott Thomas, Mickael Coustaty, Aurelie Joseph, Gaspar Deloin, Elodie Carel, Vincent Poulain D'Andecy, Jean-Marc Ogier,
- Abstract要約: 本研究は,テーブル抽出を改善するための最先端モデルを強化するために設計されたモジュール式後処理システムであるRAPTORを紹介する。
RAPTORは、TD(recurrent Table Detection)とTSR(Table Structure Recognition)の問題に対処し、両方の精度構造予測を改善した。
その結果、私たちのアプローチは製品表に優れていますが、様々なテーブル形式にまたがって適切なパフォーマンスを維持しています。
- 参考スコア(独自算出の注目度): 0.1516287840715525
- License:
- Abstract: Extracting tables from documents is a critical task across various industries, especially on business documents like invoices and reports. Existing systems based on DEtection TRansformer (DETR) such as TAble TRansformer (TATR), offer solutions for Table Detection (TD) and Table Structure Recognition (TSR) but face challenges with diverse table formats and common errors like incorrect area detection and overlapping columns. This research introduces RAPTOR, a modular post-processing system designed to enhance state-of-the-art models for improved table extraction, particularly for product tables. RAPTOR addresses recurrent TD and TSR issues, improving both precision and structural predictions. For TD, we use DETR (trained on ICDAR 2019) and TATR (trained on PubTables-1M and FinTabNet), while TSR only relies on TATR. A Genetic Algorithm is incorporated to optimize RAPTOR's module parameters, using a private dataset of product tables to align with industrial needs. We evaluate our method on two private datasets of product tables, the public DOCILE dataset (which contains tables similar to our target product tables), and the ICDAR 2013 and ICDAR 2019 datasets. The results demonstrate that while our approach excels at product tables, it also maintains reasonable performance across diverse table formats. An ablation study further validates the contribution of each module in our system.
- Abstract(参考訳): 文書から表を抽出することは、特に請求書や報告書などのビジネス文書において、様々な産業において重要な課題である。
テーブル検出(TD)とテーブル構造認識(TSR)のソリューションを提供するTAble TRansformer(TATR)のようなDetection TRansformer(DETR)に基づく既存のシステムでは、テーブル形式や、誤った領域検出や重複カラムなどの一般的なエラーに直面する。
本研究は,特に製品表において,テーブル抽出を改善するための最先端モデルを強化するために設計されたモジュール式後処理システムであるRAPTORを紹介する。
RAPTORは繰り返し発生するTDとTSRの問題に対処し、精度と構造予測の両方を改善した。
TD では DETR (ICDAR 2019 でトレーニング) と TATR (PubTables-1M と FinTabNet でトレーニング) を使用します。
遺伝的アルゴリズムはRAPTORのモジュールパラメータを最適化するために組み込まれ、産業ニーズに合わせて製品テーブルのプライベートデータセットを使用する。
本手法は,2つのプライベートな製品表データセット,パブリックDOCILEデータセット(対象製品表に類似したテーブルを含む)とICDAR 2013およびICDAR 2019データセットで評価する。
その結果、私たちのアプローチは製品表に優れていますが、様々なテーブル形式にまたがって適切なパフォーマンスを維持しています。
アブレーション研究は、我々のシステムにおける各モジュールの寄与をさらに検証する。
関連論文リスト
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - TART: An Open-Source Tool-Augmented Framework for Explainable Table-based Reasoning [61.14586098005874]
現在のLarge Language Models (LLM) は、テーブル構造を理解し、正確な数値推論を適用する能力に制限がある。
LLMと特殊なツールを統合するTART(Tool-Augmented Reasoning framework for Tables)を紹介した。
TARTには、正確なデータ表現を保証するテーブルフォーマッター、特定の計算ツールを開発するツールメーカー、説明可能性を維持するための説明ジェネレータの3つの重要なコンポーネントが含まれている。
論文 参考訳(メタデータ) (2024-09-18T06:19:59Z) - TC-OCR: TableCraft OCR for Efficient Detection & Recognition of Table Structure & Content [39.34067105360439]
本稿では,DeTR,CascadeTabNet,PP OCR v2といったディープラーニングモデルを統合し,総合的な画像ベースのテーブル認識を実現するエンドツーエンドパイプラインを提案する。
本システムでは,同時テーブル検出(TD),テーブル構造認識(TSR),テーブル内容認識(TCR)を実現している。
提案手法は0.96のIOUと78%のOCR精度を実現し,従来のテーブルトランスフォーマーに比べてOCR精度が約25%向上したことを示す。
論文 参考訳(メタデータ) (2024-04-16T06:24:53Z) - TRACE: Table Reconstruction Aligned to Corner and Edges [7.536220920052911]
そこで我々は,テーブルがセルで構成され,各セルがエッジからなる境界で構成されているテーブルの自然特性を解析した。
ボトムアップ方式でテーブルを再構築する新しい手法を提案する。
シンプルな設計はモデルを訓練しやすくし、以前の2段階の手法よりも少ない計算を必要とする。
論文 参考訳(メタデータ) (2023-05-01T02:26:15Z) - A large-scale dataset for end-to-end table recognition in the wild [13.717478398235055]
テーブル認識(Table Recognition, TR)は、パターン認識におけるホットスポットの一つ。
現在、実際のシナリオにおけるエンドツーエンドのTRは、3つのサブタスクを同時に達成しているが、まだ探索されていない研究領域である。
そこで本研究では,様々なテーブル形式を持つテーブル認識セット(TabRecSet)という大規模データセットを提案する。
論文 参考訳(メタデータ) (2023-03-27T02:48:51Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
SEMv2(SEM: Split, Embed, Merge)と呼ばれるテーブル構造認識器を提案する。
本稿では,テーブル分離ラインのインスタンスレベルの識別問題に対処し,条件付き畳み込みに基づくテーブル分離ライン検出戦略を提案する。
SEMv2を包括的に評価するために、iFLYTABと呼ばれるテーブル構造認識のためのより困難なデータセットも提示する。
論文 参考訳(メタデータ) (2023-03-08T05:15:01Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
テーブル検索のタスクに焦点をあてて、"テーブル固有のモデル設計はテーブル検索に必要か?
自然質問データセット (NQ-table) の表に基づく分析の結果, 70%以上の症例では構造が無視できる役割を担っていることがわかった。
次に、テーブル構造、すなわち補助列/カラム埋め込み、ハードアテンションマスク、ソフトリレーションに基づくアテンションバイアスを明示的にエンコードする3つのモジュールを実験する。
いずれも大きな改善は得られず、テーブル固有のモデル設計がテーブル検索に不要である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:35:23Z) - TGRNet: A Table Graph Reconstruction Network for Table Structure
Recognition [76.06530816349763]
本稿では,表構造認識のためのエンドツーエンドのトレーニング可能な表グラフ再構成ネットワーク(TGRNet)を提案する。
具体的には,異なる細胞の空間的位置と論理的位置を共同で予測するために,細胞検出枝と細胞論理的位置分岐の2つの主枝を有する。
論文 参考訳(メタデータ) (2021-06-20T01:57:05Z) - Multi-Type-TD-TSR -- Extracting Tables from Document Images using a
Multi-stage Pipeline for Table Detection and Table Structure Recognition:
from OCR to Structured Table Representations [63.98463053292982]
テーブルの認識は、テーブル検出とテーブル構造認識という2つの主要なタスクから構成される。
最近の研究は、テーブル構造認識のタスクにトランスファーラーニングを併用したディープラーニングアプローチへの明確な傾向を示している。
本稿では,テーブル認識問題に対するエンドツーエンドのソリューションを提供するMulti-Type-TD-TSRというマルチステージパイプラインを提案する。
論文 参考訳(メタデータ) (2021-05-23T21:17:18Z) - Deep Structured Feature Networks for Table Detection and Tabular Data
Extraction from Scanned Financial Document Images [0.6299766708197884]
本研究では、財務PDF文書から自動テーブル検出と表データ抽出を提案する。
我々は,より高速なR-CNN(Region-based Convolutional Neural Network)モデルを用いて,テーブル領域を検出する3つの主要なプロセスからなる手法を提案する。
提案したデータセットから,検出モデルの卓越したテーブル検出性能を得た。
論文 参考訳(メタデータ) (2021-02-20T08:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。