Denoising, segmentation and volumetric rendering of optical coherence tomography angiography (OCTA) image using deep learning techniques: a review
- URL: http://arxiv.org/abs/2502.14935v1
- Date: Thu, 20 Feb 2025 08:34:05 GMT
- Title: Denoising, segmentation and volumetric rendering of optical coherence tomography angiography (OCTA) image using deep learning techniques: a review
- Authors: Kejie Chen, Xiaochun Yang, Jing Na, Wenbo Wang,
- Abstract summary: OCTA is a non-invasive imaging technique widely used to study vascular structures and micro-circulation dynamics in the retina and choroid.<n>Deep learning (DL) based imaging analysis models are able to automatically detect and remove artifacts and noises.
- Score: 7.400678320393914
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optical coherence tomography angiography (OCTA) is a non-invasive imaging technique widely used to study vascular structures and micro-circulation dynamics in the retina and choroid. OCTA has been widely used in clinics for diagnosing ocular disease and monitoring its progression, because OCTA is safer and faster than dye-based angiography while retaining the ability to characterize micro-scale structures. However, OCTA data contains many inherent noises from the devices and acquisition protocols and suffers from various types of artifacts, which impairs diagnostic accuracy and repeatability. Deep learning (DL) based imaging analysis models are able to automatically detect and remove artifacts and noises, and enhance the quality of image data. It is also a powerful tool for segmentation and identification of normal and pathological structures in the images. Thus, the value of OCTA imaging can be significantly enhanced by the DL-based approaches for interpreting and performing measurements and predictions on the OCTA data. In this study, we reviewed literature on the DL models for OCTA images in the latest five years. In particular, we focused on discussing the current problems in the OCTA data and the corresponding design principles of the DL models. We also reviewed the state-of-art DL models for 3D volumetric reconstruction of the vascular networks and pathological structures such as the edema and distorted optic disc. In addition, the publicly available dataset of OCTA images are summarized at the end of this review. Overall, this review can provide valuable insights for engineers to develop novel DL models by utilizing the characteristics of OCTA signals and images. The pros and cons of each DL methods and their applications discussed in this review can be helpful to assist technicians and clinicians to use proper DL models for fundamental research and disease screening.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
Eye diseases are common in older Americans and can lead to decreased vision and blindness.
Recent advancements in imaging technologies allow clinicians to capture high-quality images of the retinal blood vessels via Optical Coherence Tomography Angiography ( OCTA)
OCTA provides detailed vascular imaging as compared to the solely structural information obtained by common OCT imaging.
arXiv Detail & Related papers (2024-07-21T23:24:49Z) - Quantitative Characterization of Retinal Features in Translated OCTA [0.6664270117164767]
This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography ( OCT) images into Optical Coherence Tomography Angiography ( OCTA) images.
arXiv Detail & Related papers (2024-04-24T18:40:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Application of Homomorphic Encryption in Medical Imaging [60.51436886110803]
We show how HE can be used to make predictions over medical images while preventing unauthorized secondary use of data.
We report some experiments using 3D chest CT-Scans for a nodule detection task.
arXiv Detail & Related papers (2021-10-12T19:57:12Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Interpretable and synergistic deep learning for visual explanation and
statistical estimations of segmentation of disease features from medical
images [0.0]
Deep learning (DL) models for disease classification or segmentation from medical images are increasingly trained using transfer learning (TL) from unrelated natural world images.
We report detailed comparisons, rigorous statistical analysis and comparisons of widely used DL architecture for binary segmentation after TL.
A free GitHub repository of TII and LMI models, code and more than 10,000 medical images and their Grad-CAM output from this study can be used as starting points for advanced computational medicine.
arXiv Detail & Related papers (2020-11-11T14:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.