Quantitative Characterization of Retinal Features in Translated OCTA
- URL: http://arxiv.org/abs/2404.16133v1
- Date: Wed, 24 Apr 2024 18:40:45 GMT
- Title: Quantitative Characterization of Retinal Features in Translated OCTA
- Authors: Rashadul Hasan Badhon, Atalie Carina Thompson, Jennifer I. Lim, Theodore Leng, Minhaj Nur Alam,
- Abstract summary: This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography ( OCT) images into Optical Coherence Tomography Angiography ( OCTA) images.
- Score: 0.6664270117164767
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Purpose: This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography (OCT) images into Optical Coherence Tomography Angiography (OCTA) images, potentially bypassing the need for specialized OCTA hardware. Methods: The method involved implementing a generative adversarial network framework that includes a 2D vascular segmentation model and a 2D OCTA image translation model. The study utilizes a public dataset of 500 patients, divided into subsets based on resolution and disease status, to validate the quality of TR-OCTA images. The validation employs several quality and quantitative metrics to compare the translated images with ground truth OCTAs (GT-OCTA). We then quantitatively characterize vascular features generated in TR-OCTAs with GT-OCTAs to assess the feasibility of using TR-OCTA for objective disease diagnosis. Result: TR-OCTAs showed high image quality in both 3 and 6 mm datasets (high-resolution, moderate structural similarity and contrast quality compared to GT-OCTAs). There were slight discrepancies in vascular metrics, especially in diseased patients. Blood vessel features like tortuosity and vessel perimeter index showed a better trend compared to density features which are affected by local vascular distortions. Conclusion: This study presents a promising solution to the limitations of OCTA adoption in clinical practice by using vascular features from TR-OCTA for disease detection. Translation relevance: This study has the potential to significantly enhance the diagnostic process for retinal diseases by making detailed vascular imaging more widely available and reducing dependency on costly OCTA equipment.
Related papers
- Cross Feature Fusion of Fundus Image and Generated Lesion Map for Referable Diabetic Retinopathy Classification [1.091626241764448]
Diabetic Retinopathy (DR) is a primary cause of blindness, necessitating early detection and diagnosis.
We develop an advanced cross-learning DR classification method leveraging transfer learning and cross-attention mechanisms.
Our experiments, utilizing two public datasets, demonstrate a superior accuracy of 94.6%, surpassing current state-of-the-art methods by 4.4%.
arXiv Detail & Related papers (2024-11-06T02:23:38Z) - Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
Eye diseases are common in older Americans and can lead to decreased vision and blindness.
Recent advancements in imaging technologies allow clinicians to capture high-quality images of the retinal blood vessels via Optical Coherence Tomography Angiography ( OCTA)
OCTA provides detailed vascular imaging as compared to the solely structural information obtained by common OCT imaging.
arXiv Detail & Related papers (2024-07-21T23:24:49Z) - Synthesizing CTA Image Data for Type-B Aortic Dissection using Stable
Diffusion Models [0.993378200812519]
Stable Diffusion (SD) has gained a lot of attention in recent years in the field of Generative AI.
It has been shown that Cardiac CTA images can be successfully generated using Text to Image (T2I) stable diffusion model.
arXiv Detail & Related papers (2024-02-10T14:59:37Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - Deep-Learning-based Vasculature Extraction for Single-Scan Optical
Coherence Tomography Angiography [9.77526300425824]
We propose a vasculature extraction pipeline that uses only one-repeated OCT scan to generate OCTA images.
The pipeline is based on the proposed Vasculature Extraction Transformer (VET), which leverages convolutional projection to better learn the spatial relationships between image patches.
arXiv Detail & Related papers (2023-04-17T13:55:26Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.