Compact Latent Representation for Image Compression (CLRIC)
- URL: http://arxiv.org/abs/2502.14937v1
- Date: Thu, 20 Feb 2025 13:20:56 GMT
- Title: Compact Latent Representation for Image Compression (CLRIC)
- Authors: Ayman A. Ameen, Thomas Richter, André Kaup,
- Abstract summary: Current image compression models often require separate models for each quality level, making them resource-intensive in terms of both training and storage.<n>We propose an innovative approach that utilizes latent variables from pre-existing trained models for perceptual image compression.<n>Our method achieves comparable perceptual quality to state-of-the-art learned image compression models while being both model-agnostic and resolution-agnostic.
- Score: 16.428925911432344
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current image compression models often require separate models for each quality level, making them resource-intensive in terms of both training and storage. To address these limitations, we propose an innovative approach that utilizes latent variables from pre-existing trained models (such as the Stable Diffusion Variational Autoencoder) for perceptual image compression. Our method eliminates the need for distinct models dedicated to different quality levels. We employ overfitted learnable functions to compress the latent representation from the target model at any desired quality level. These overfitted functions operate in the latent space, ensuring low computational complexity, around $25.5$ MAC/pixel for a forward pass on images with dimensions $(1363 \times 2048)$ pixels. This approach efficiently utilizes resources during both training and decoding. Our method achieves comparable perceptual quality to state-of-the-art learned image compression models while being both model-agnostic and resolution-agnostic. This opens up new possibilities for the development of innovative image compression methods.
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.
Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.
Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - Compression-Aware One-Step Diffusion Model for JPEG Artifact Removal [56.307484956135355]
CODiff is a compression-aware one-step diffusion model for JPEG artifact removal.<n>We propose a dual learning strategy that combines explicit and implicit learning.<n>Results demonstrate that CODiff surpasses recent leading methods in both quantitative and visual quality metrics.
arXiv Detail & Related papers (2025-02-14T02:46:27Z) - Scalable Image Coding for Humans and Machines Using Feature Fusion Network [0.0]
We propose a learning-based scalable image coding method for humans and machines that is compatible with numerous image recognition models.
Our approach confirms that the feature fusion network efficiently combines image compression models while reducing the number of parameters.
arXiv Detail & Related papers (2024-05-15T07:31:48Z) - A Training-Free Defense Framework for Robust Learned Image Compression [48.41990144764295]
We study the robustness of learned image compression models against adversarial attacks.
We present a training-free defense technique based on simple image transform functions.
arXiv Detail & Related papers (2024-01-22T12:50:21Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Lossless Compression with Latent Variable Models [4.289574109162585]
We use latent variable models, which we call 'bits back with asymmetric numeral systems' (BB-ANS)
The method involves interleaving encode and decode steps, and achieves an optimal rate when compressing batches of data.
We describe 'Craystack', a modular software framework which we have developed for rapid prototyping of compression using deep generative models.
arXiv Detail & Related papers (2021-04-21T14:03:05Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.