論文の概要: Few-shot Species Range Estimation
- arxiv url: http://arxiv.org/abs/2502.14977v1
- Date: Thu, 20 Feb 2025 19:13:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:28.288186
- Title: Few-shot Species Range Estimation
- Title(参考訳): 数発の種数範囲推定
- Authors: Christian Lange, Max Hamilton, Elijah Cole, Alexander Shepard, Samuel Heinrich, Angela Zhu, Subhransu Maji, Grant Van Horn, Oisin Mac Aodha,
- Abstract要約: 特定の種が地球上でどこで発見できるかを知ることは、生態学の研究と保全に不可欠である。
我々は、限られたデータから種の範囲を正確に推定することの難しさに対処するために、数発の種範囲推定の新しいアプローチを概説する。
推測において,本モデルでは,テキストや画像などの任意のメタデータとともに,空間的位置のセットを入力として取り,フィードフォワード方式で未確認種の範囲を予測できる種を出力する。
- 参考スコア(独自算出の注目度): 61.60698161072356
- License:
- Abstract: Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts. By mapping the spatial ranges of all species, we would obtain deeper insights into how global biodiversity is affected by climate change and habitat loss. However, accurate range estimates are only available for a relatively small proportion of all known species. For the majority of the remaining species, we often only have a small number of records denoting the spatial locations where they have previously been observed. We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data. During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in feed-forward manner. We validate our method on two challenging benchmarks, where we obtain state-of-the-art range estimation performance, in a fraction of the compute time, compared to recent alternative approaches.
- Abstract(参考訳): 特定の種が地球上でどこで発見できるかを知ることは、生態学の研究と保全に不可欠である。
全種の空間範囲をマッピングすることで、気候変動や生息環境の喪失によって地球規模の生物多様性がどのように影響を受けるか、より深い知見を得ることができる。
しかし、正確な射程推定は、すべての既知の種の比較的小さな割合でのみ可能である。
残りのほとんどの種については、これまで観測された空間的な位置を示す少数の記録しか残っていないことが多い。
我々は、限られたデータから種の範囲を正確に推定するという課題に対処するために、数発の種範囲推定の新しいアプローチを概説する。
推測において,本モデルでは,テキストや画像などの任意のメタデータとともに,空間的位置のセットを入力として取り込んで,これまで見られなかった種の範囲をフィードフォワードで予測できる種を出力する。
提案手法を2つの挑戦的ベンチマークで検証し,近年の代替手法と比較して計算時間のごく一部で最先端範囲推定性能が得られた。
関連論文リスト
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Generating Binary Species Range Maps [12.342459602972609]
種分散モデル(SDM)や、より最近では、ディープラーニングベースの変種が、潜在的な自動化された代替手段を提供する。
深層学習に基づくSDMは、特定の場所における種の存在を予測した確率を連続的に生成する。
本研究では,プレゼンスのみのデータを用いたレンジマップのバイナライズのための最適しきい値の自動同定手法について検討した。
論文 参考訳(メタデータ) (2024-08-28T17:17:20Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
気候変動は生物多様性の喪失の主要な要因である。
種の分布には大きな知識ギャップがある。
本稿では,コンピュータビジョンを利用した種分散モデルの改良手法を提案する。
論文 参考訳(メタデータ) (2023-05-01T20:27:11Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
より一般的な対象検出器やセグメンタなどと同様に、密集したポーズ認識に存在する知識を、他のクラスにおける密集したポーズ認識の問題に移すことが可能であることを示す。
我々は、人間と幾何学的に整合した新しい動物のためのDensePoseモデルを確立することでこれを行う。
また、クラスチンパンジーにDensePoseの方法でラベル付けされた2つのベンチマークデータセットを導入し、アプローチを評価するためにそれらを使用します。
論文 参考訳(メタデータ) (2020-02-28T21:43:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。