Low degree conjecture implies sharp computational thresholds in stochastic block model
- URL: http://arxiv.org/abs/2502.15024v2
- Date: Mon, 28 Apr 2025 13:50:28 GMT
- Title: Low degree conjecture implies sharp computational thresholds in stochastic block model
- Authors: Jingqiu Ding, Yiding Hua, Lucas Slot, David Steurer,
- Abstract summary: We investigate implications of the (extended) low-degree conjecture (recently formalized in [MW23] in the context of the symmetric block model)<n>We establish that no-time algorithm can weakly recover community labels below the Kesten-Stigum (KS) threshold.<n>Our results provide evidence of a computational-to-statistical gap in learning the parameters of block models.
- Score: 3.7873597471903935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate implications of the (extended) low-degree conjecture (recently formalized in [MW23]) in the context of the symmetric stochastic block model. Assuming the conjecture holds, we establish that no polynomial-time algorithm can weakly recover community labels below the Kesten-Stigum (KS) threshold. In particular, we rule out polynomial-time estimators that, with constant probability, achieve correlation with the true communities that is significantly better than random. Whereas, above the KS threshold, polynomial-time algorithms are known to achieve constant correlation with the true communities with high probability[Mas14,AS15]. To our knowledge, we provide the first rigorous evidence for the sharp transition in recovery rate for polynomial-time algorithms at the KS threshold. Notably, under a stronger version of the low-degree conjecture, our lower bound remains valid even when the number of blocks diverges. Furthermore, our results provide evidence of a computational-to-statistical gap in learning the parameters of stochastic block models. In contrast to prior work, which either (i) rules out polynomial-time algorithms for hypothesis testing with 1-o(1) success probability [Hopkins18, BBK+21a] under the low-degree conjecture, or (ii) rules out low-degree polynomials for learning the edge connection probability matrix [LG23], our approach provides stronger lower bounds on the recovery and learning problem. Our proof combines low-degree lower bounds from [Hopkins18, BBK+21a] with graph splitting and cross-validation techniques. In order to rule out general recovery algorithms, we employ the correlation preserving projection method developed in [HS17].
Related papers
- Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Sparse PCA: Algorithms, Adversarial Perturbations and Certificates [9.348107805982604]
We study efficient algorithms for Sparse PCA in standard statistical models.
Our goal is to achieve optimal recovery guarantees while being resilient to small perturbations.
arXiv Detail & Related papers (2020-11-12T18:58:51Z) - Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent [29.684442397855197]
We study two of the most popular restricted computational models, the statistical query framework and low-degree corollas, in the context of high-dimensional hypothesis testing.
Under mild conditions on the testing problem, the two classes of algorithms are essentially equivalent in power.
Asries, we obtain new statistical query lower bounds for sparse PCA, tensor PCA and several variants of the planted clique problem.
arXiv Detail & Related papers (2020-09-13T22:55:18Z) - Computational Barriers to Estimation from Low-Degree Polynomials [81.67886161671379]
We study the power of low-degrees for the task of detecting the presence of hidden structures.
For a large class of "signal plus noise" problems, we give a user-friendly lower bound for the best possible mean squared error achievable by any degree.
As applications, we give a tight characterization of the low-degree minimum mean squared error for the planted submatrix and planted dense subgraph problems.
arXiv Detail & Related papers (2020-08-05T17:52:10Z) - Non-Convex Exact Community Recovery in Stochastic Block Model [31.221745716673546]
Community detection in graphs that are generated according to symmetric block models (SBMs) has received much attention lately.
We show that in the logarithmic sparsity regime of the problem, with high probability the proposed two-stage method can exactly recover the two communities down to the information-theoretic limit in $mathcalO(nlog2n/loglog n)$ time.
We also conduct numerical experiments on both synthetic and real data sets to demonstrate the efficacy of our proposed method and complement our theoretical development.
arXiv Detail & Related papers (2020-06-29T07:03:27Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Tensor Clustering with Planted Structures: Statistical Optimality and
Computational Limits [9.427635404752936]
We focus on two clustering models, constant high-order clustering (CHC) and rank-one higher-order clustering (ROHC)
We identify the boundaries of signal-to-noise ratio for which CHC and ROHC detection/recovery are statistically possible.
We propose algorithms that achieve reliable detection and recovery when the signalto-noise ratio is above these thresholds.
arXiv Detail & Related papers (2020-05-21T15:53:44Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
This paper introduces an analysis strategy based on derandomization, illustrated by applications to various concrete models.
We provide numerical simulations of some of these lower bounds, and show a close relation to the actual performance of the Benjamini-Hochberg (BH) algorithm.
arXiv Detail & Related papers (2020-05-07T19:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.