Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks
- URL: http://arxiv.org/abs/2403.15370v1
- Date: Fri, 22 Mar 2024 17:49:11 GMT
- Title: Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks
- Authors: Aqeel Anwar, Tae Eun Choe, Zian Wang, Sanja Fidler, Minwoo Park,
- Abstract summary: We present ARSim, a framework designed to enhance real multi-view image data with 3D synthetic objects of interest.
We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it.
The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles.
- Score: 47.07188762367792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting a diverse range of objects under various driving scenarios is essential for the effectiveness of autonomous driving systems. However, the real-world data collected often lacks the necessary diversity presenting a long-tail distribution. Although synthetic data has been utilized to overcome this issue by generating virtual scenes, it faces hurdles such as a significant domain gap and the substantial efforts required from 3D artists to create realistic environments. To overcome these challenges, we present ARSim, a fully automated, comprehensive, modular framework designed to enhance real multi-view image data with 3D synthetic objects of interest. The proposed method integrates domain adaptation and randomization strategies to address covariate shift between real and simulated data by inferring essential domain attributes from real data and employing simulation-based randomization for other attributes. We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it. Illumination is achieved by estimating light distribution from multiple images capturing the surroundings of the vehicle. Camera parameters from real data are employed to render synthetic assets in each frame. The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles. Experimental results on various AV perception tasks demonstrate the superior performance of networks trained on the augmented dataset.
Related papers
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Exploring Generative AI for Sim2Real in Driving Data Synthesis [6.769182994217369]
Driving simulators offer a solution by automatically generating various driving scenarios with corresponding annotations, but the simulation-to-reality (Sim2Real) domain gap remains a challenge.
This paper applied three different generative AI methods to leverage semantic label maps from a driving simulator as a bridge for the creation of realistic datasets.
Experiments show that although GAN-based methods are adept at generating high-quality images when provided with manually annotated labels, ControlNet produces synthetic datasets with fewer artefacts and more structural fidelity when using simulator-generated labels.
arXiv Detail & Related papers (2024-04-14T01:23:19Z) - Attention Mechanism for Contrastive Learning in GAN-based Image-to-Image
Translation [3.90801108629495]
We propose a GAN-based model that is capable of generating high-quality images across different domains.
We leverage Contrastive Learning to train the model in a self-supervised way using image data acquired in the real world using real sensors and simulated images from 3D games.
arXiv Detail & Related papers (2023-02-23T14:23:23Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
Large datasets can be used for improved, targeted training of deep neural networks.
In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities.
arXiv Detail & Related papers (2020-06-21T10:29:36Z) - Deflating Dataset Bias Using Synthetic Data Augmentation [8.509201763744246]
State-of-the-art methods for most vision tasks for Autonomous Vehicles (AVs) rely on supervised learning.
The goal of this paper is to investigate the use of targeted synthetic data augmentation for filling gaps in real datasets for vision tasks.
Empirical studies on three different computer vision tasks of practical use to AVs consistently show that having synthetic data in the training mix provides a significant boost in cross-dataset generalization performance.
arXiv Detail & Related papers (2020-04-28T21:56:10Z) - Virtual to Real adaptation of Pedestrian Detectors [9.432150710329607]
ViPeD is a new synthetically generated set of images collected with the graphical engine of the video game GTA V - Grand Theft Auto V.
We propose two different Domain Adaptation techniques suitable for the pedestrian detection task, but possibly applicable to general object detection.
Experiments show that the network trained with ViPeD can generalize over unseen real-world scenarios better than the detector trained over real-world data.
arXiv Detail & Related papers (2020-01-09T14:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.