Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps
- URL: http://arxiv.org/abs/2502.15120v1
- Date: Fri, 21 Feb 2025 00:48:32 GMT
- Title: Unveiling Reasoning Thresholds in Language Models: Scaling, Fine-Tuning, and Interpretability through Attention Maps
- Authors: Yen-Che Hsiao, Abhishek Dutta,
- Abstract summary: This study investigates the in-context learning capabilities of various decoder-only transformer-based language models with different model sizes and training data.<n>We identify a critical parameter threshold (1.6 billion), beyond which reasoning performance improves significantly in tasks such as commonsense reasoning in multiple-choice question answering and deductive reasoning.
- Score: 3.8936716676293917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the in-context learning capabilities of various decoder-only transformer-based language models with different model sizes and training data, including GPT2, SmolLM2, OpenELM, TinyLlama, Stable LM, and Gemma 2. We identify a critical parameter threshold (~1.6 billion), beyond which reasoning performance improves significantly in tasks such as commonsense reasoning in multiple-choice question answering and deductive reasoning. Specifically, models above this threshold achieve better success rates in chain-of-thought (CoT) prompting for deductive reasoning tasks, especially those requiring longer reasoning chains, such as proof by contradiction and disjunction elimination. To address limitations in sub-threshold models, we demonstrate that fine-tuning with task-specific exemplars substantially enhances reasoning performance, enabling accurate CoT generation even without additional exemplars in the prompt for tasks with shorter reasoning chains. Finally, our analysis of attention maps reveals that models capable of generating correct CoTs exhibit higher token-level attention scores on subsequent correct tokens and the correct parts of speech, providing interpretability insights into reasoning processes. These findings collectively advance understanding of reasoning capabilities in decoder-only transformer-based models. The code is available at: https://github.com/AnnonymousForPapers/CoT_Reasoning_Test.
Related papers
- The Challenge of Teaching Reasoning to LLMs Without RL or Distillation [31.973226821366325]
Reasoning-capable language models achieve state-of-the-art performance in diverse complex tasks by generating long, explicit Chain-of-Thought traces.<n>We ask whether long CoT can be induced in a base model using only prompting or minimal tuning.<n>The resulting model outperforms the much larger textttQwen2.5-Math-72B-Instruct, showing that a handful of high-quality examples can unlock strong reasoning capabilities.
arXiv Detail & Related papers (2025-07-14T01:14:50Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Prompting Science Report 2: The Decreasing Value of Chain of Thought in Prompting [0.0]
Chain-of-Thought (CoT) prompting is a technique that encourages a large language model to "think step by step"<n>The effectiveness of CoT prompting can vary greatly depending on the type of task and model.<n>For models designed with explicit reasoning capabilities, CoT prompting often results in only marginal, if any, gains in answer accuracy.
arXiv Detail & Related papers (2025-06-08T13:41:25Z) - Reasoning Can Hurt the Inductive Abilities of Large Language Models [16.996890415549952]
It is often assumed that chain-of-thought (CoT) prompting, as used in Large Reasoning Models (LRMs), enhances such reasoning.<n>We investigate this assumption with creating four controlled, diagnostic game-based tasks with hidden human-defined rules.<n>We find that CoT reasoning can degrade inductive performance, with LRMs often underperforming their non-reasoning counterparts.
arXiv Detail & Related papers (2025-05-30T05:24:21Z) - Implicit Reasoning in Transformers is Reasoning through Shortcuts [10.351525484558376]
Test-time compute is emerging as a new paradigm for enhancing language models' complex multi-step reasoning capabilities.
We investigate how language models perform implicit reasoning in multi-step tasks.
arXiv Detail & Related papers (2025-03-10T17:58:31Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Can Large Language Models Detect Errors in Long Chain-of-Thought Reasoning? [57.17826305464394]
o1-like models produce the long Chain-of-Thought (CoT) reasoning steps to improve the reasoning abilities of existing Large Language Models (LLMs)
We introduce the DeltaBench, including the generated long CoTs from different o1-like models for different reasoning tasks.
Based on DeltaBench, we first perform fine-grained analysis of the generated long CoTs to discover the effectiveness and efficiency of different o1-like models.
arXiv Detail & Related papers (2025-02-26T17:59:27Z) - STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training [87.58996020705258]
Video Large Language Models (Video-LLMs) have recently shown strong derivation in basic video understanding tasks.<n>Video-LLMs struggle with compositional reasoning that requires multi-step explicit-temporal inference across object relations, interactions and events.<n>We propose STEP, a novel graph-guided self-training method that enables VideoLLMs to generate reasoning-rich finetuning data from any raw videos to improve itself.
arXiv Detail & Related papers (2024-11-29T11:54:55Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - A Hopfieldian View-based Interpretation for Chain-of-Thought Reasoning [48.51969964676017]
Chain-of-Thought (CoT) holds a significant place in augmenting the reasoning performance for large language models.
We propose a Read-and-Control approach for controlling the accuracy of CoT.
arXiv Detail & Related papers (2024-06-18T04:07:13Z) - Beyond Imitation: Learning Key Reasoning Steps from Dual Chain-of-Thoughts in Reasoning Distillation [24.272384832200522]
We propose mistaktextbfE-textbfDriven key reasontextbfIng step distillatextbfTion (textbfEDIT)
We design prompts to generate dual CoTs data with similar reasoning paths but divergent conclusions.
Experiments validate the effectiveness of EDIT across both in-domain and out-of-domain benchmark reasoning datasets.
arXiv Detail & Related papers (2024-05-30T06:32:11Z) - Markovian Transformers for Informative Language Modeling [0.9642500063568188]
Chain-of-Thought (CoT) reasoning often fails to faithfully reflect a language model's underlying decision process.<n>We make CoT causally essential in a "Markovian" language model, factoring next-token prediction through an intermediate CoT and training it to predict future tokens independently of the original prompt.
arXiv Detail & Related papers (2024-04-29T17:36:58Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Analyzing Chain-of-Thought Prompting in Large Language Models via
Gradient-based Feature Attributions [10.621564997491808]
Chain-of-thought (CoT) prompting has been shown to empirically improve the accuracy of large language models.
We investigate whether CoT prompting affects the relative importances they assign to particular input tokens.
Our results indicate that while CoT prompting does not increase the magnitude of saliency scores attributed to semantically relevant tokens in the prompt, it increases the robustness of saliency scores to question perturbations and variations in model output.
arXiv Detail & Related papers (2023-07-25T08:51:30Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
Large language models (LLMs) are difficult to verify the correctness and safety of their behavior.
One approach is to prompt LLMs to externalize their reasoning, by having them generate step-by-step reasoning as they answer a question.
This approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case.
Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT.
arXiv Detail & Related papers (2023-07-17T00:54:10Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.