Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
- URL: http://arxiv.org/abs/2502.15204v1
- Date: Fri, 21 Feb 2025 04:38:27 GMT
- Title: Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
- Authors: Yifan Jiang, Yannick Lemaréchal, Josée Bafaro, Jessica Abi-Rjeile, Philippe Joubert, Philippe Després, Venkata Manem,
- Abstract summary: Lung-DDPM is a thoracic CT image synthesis approach that effectively generates high-fidelity 3D synthetic CT images.<n>Our results suggest that the proposed method outperforms other state-of-the-art generative models in image quality evaluation and downstream lung nodule segmentation tasks.<n>The experimental results highlight Lung-DDPM's potential for a broader range of medical imaging applications.
- Score: 3.433052805056497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of artificial intelligence (AI), AI-assisted medical imaging analysis demonstrates remarkable performance in early lung cancer screening. However, the costly annotation process and privacy concerns limit the construction of large-scale medical datasets, hampering the further application of AI in healthcare. To address the data scarcity in lung cancer screening, we propose Lung-DDPM, a thoracic CT image synthesis approach that effectively generates high-fidelity 3D synthetic CT images, which prove helpful in downstream lung nodule segmentation tasks. Our method is based on semantic layout-guided denoising diffusion probabilistic models (DDPM), enabling anatomically reasonable, seamless, and consistent sample generation even from incomplete semantic layouts. Our results suggest that the proposed method outperforms other state-of-the-art (SOTA) generative models in image quality evaluation and downstream lung nodule segmentation tasks. Specifically, Lung-DDPM achieved superior performance on our large validation cohort, with a Fr\'echet inception distance (FID) of 0.0047, maximum mean discrepancy (MMD) of 0.0070, and mean squared error (MSE) of 0.0024. These results were 7.4$\times$, 3.1$\times$, and 29.5$\times$ better than the second-best competitors, respectively. Furthermore, the lung nodule segmentation model, trained on a dataset combining real and Lung-DDPM-generated synthetic samples, attained a dice coefficient (Dice) of 0.3914 and sensitivity of 0.4393. This represents 8.8\% and 18.6\% improvements in DICE and sensitivity compared to the model trained solely on real samples. The experimental results highlight Lung-DDPM's potential for a broader range of medical imaging applications, such as general tumor segmentation, cancer survival estimation, and risk prediction.
Related papers
- Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Early Lung Cancer Detection [1.5391321019692428]
This research aims to integrate semantic features derived from radiologists' assessments of nodules, allowing the model to learn clinically relevant, robust, and explainable features for predicting lung cancer.
We finetuned a pretrained Contrastive Language-Image Pretraining model with a parameter-efficient fine-tuning approach to align imaging and semantic features and predict the one-year lung cancer diagnosis.
Our model demonstrated an AUROC of 0.90 and AUPRC of 0.78, outperforming baseline state-of-the-art models on external datasets.
arXiv Detail & Related papers (2025-04-30T06:11:34Z) - A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI) [0.0]
Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers.
As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.
arXiv Detail & Related papers (2025-03-26T17:03:46Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.<n>Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Quantifying uncertainty in lung cancer segmentation with foundation models applied to mixed-domain datasets [6.712251433139412]
Medical image foundation models have shown the ability to segment organs and tumors with minimal fine-tuning.<n>These models are typically evaluated on task-specific in-distribution (ID) datasets.<n>We introduce a comprehensive set of computationally fast metrics to evaluate the performance of multiple foundation models trained with self-supervised learning (SSL)<n>SMIT produced the highest F1-score (LRAD: 0.60, 5Rater: 0.64) and lowest entropy (LRAD: 0.06, 5Rater: 0.12), indicating higher tumor detection rate and confident segmentations.
arXiv Detail & Related papers (2024-03-19T19:36:48Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.<n>This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.<n>We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.