DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model
- URL: http://arxiv.org/abs/2310.12868v2
- Date: Sat, 14 Dec 2024 21:53:36 GMT
- Title: DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model
- Authors: Zheyuan Zhang, Lanhong Yao, Bin Wang, Debesh Jha, Gorkem Durak, Elif Keles, Alpay Medetalibeyoglu, Ulas Bagci,
- Abstract summary: Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.
This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
- Score: 3.890243179348094
- License:
- Abstract: Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications since they potentially enable better generalization performance and avoid overfitting. However, the scarcity of high-quality labeled data always presents significant challenges. This paper proposes a novel approach to address this challenge by developing controllable diffusion models for medical image synthesis, called DiffBoost. We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data that preserve the essential characteristics of the original medical images by incorporating edge information of objects to guide the synthesis process. In our approach, we ensure that the synthesized samples adhere to medically relevant constraints and preserve the underlying structure of imaging data. Due to the random sampling process by the diffusion model, we can generate an arbitrary number of synthetic images with diverse appearances. To validate the effectiveness of our proposed method, we conduct an extensive set of medical image segmentation experiments on multiple datasets, including Ultrasound breast (+13.87%), CT spleen (+0.38%), and MRI prostate (+7.78%), achieving significant improvements over the baseline segmentation methods. The promising results demonstrate the effectiveness of our \textcolor{black}{DiffBoost} for medical image segmentation tasks and show the feasibility of introducing a first-ever text-guided diffusion model for general medical image segmentation tasks. With carefully designed ablation experiments, we investigate the influence of various data augmentations, hyper-parameter settings, patch size for generating random merging mask settings, and combined influence with different network architectures. Source code are available at https://github.com/NUBagciLab/DiffBoost.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
This paper investigates a new paradigm for leveraging generative models in medical applications.
We propose a diffusion-based data engine, termed MRGen, which enables generation conditioned on text prompts and masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning [3.4299097748670255]
Deep generative models have significantly advanced medical imaging analysis by enhancing dataset size and quality.
We employ a generative structure with hybrid conditions, combining clinical data and segmentation masks to guide the image synthesis process.
Our approach differs from and presents a more challenging task than traditional medical report-guided synthesis due to the less visual correlation of our clinical information with the images.
arXiv Detail & Related papers (2024-10-17T17:48:36Z) - MediSyn: A Generalist Text-Guided Latent Diffusion Model For Diverse Medical Image Synthesis [4.541407789437896]
MediSyn is a text-guided latent diffusion model capable of generating synthetic images from 6 medical specialties and 10 image types.
A direct comparison of the synthetic images against the real images confirms that our model synthesizes novel images and, crucially, may preserve patient privacy.
Our findings highlight the immense potential for generalist image generative models to accelerate algorithmic research and development in medicine.
arXiv Detail & Related papers (2024-05-16T04:28:44Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Mask-conditioned latent diffusion for generating gastrointestinal polyp
images [2.027538200191349]
This study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given segmentation masks.
Our system can generate an unlimited number of high-fidelity synthetic polyp images with the corresponding ground truth masks of polyps.
Results show that the best micro-imagewise IOU of 0.7751 was achieved from DeepLabv3+ when the training data consists of both real data and synthetic data.
arXiv Detail & Related papers (2023-04-11T14:11:17Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Diff-UNet: A Diffusion Embedded Network for Volumetric Segmentation [41.608617301275935]
We propose a novel end-to-end framework, called Diff-UNet, for medical volumetric segmentation.
Our approach integrates the diffusion model into a standard U-shaped architecture to extract semantic information from the input volume effectively.
We evaluate our method on three datasets, including multimodal brain tumors in MRI, liver tumors, and multi-organ CT volumes.
arXiv Detail & Related papers (2023-03-18T04:06:18Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.